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Abstract

Recent advances in machine learning literature provide a series of new algorithms that
both address endogeneity and can be applied in high-dimensional environments, we call
them MLIV. This paper introduces an approach for performing valid asymptotic inference
on regular functionals of MLIV estimators. The approach is based on construction of an
orthogonal moment function that has a zero derivative with respect to the MLIV estimator.
The debiasing is automatic in the sense that it only depends on the form of the identifying
moment function but not on the form of the bias correction term. We derive a convergence
rate for the penalized GMM estimator of the bias correction term. We also give conditions
for root-n consistency and asymptotic normality of the debiased MLIV estimator of the
functional of interest. Overall, the approach allows for a large variety of MLIV estimators as
along as they satisfy mild convergence rate conditions. We apply our procedure to estimate
the conditional demand derivative within the nonparametric demand for differentiated
goods framework. Using both simulated and real data, we demonstrate that our debiased
estimates have significantly reduced bias and close to the nominal level coverage, while the
plug-in estimates perform poorly.
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1 Introduction

Instrumental variables methods are widely used in applied research for estimation and in-
ference in models containing endogenous regressors. In many cases, economic theory does
not impose any functional form restrictions motivating nonparametric instrumental variables

(NPIV) methods, where the function of interest is not assumed to be known up to a finite-
dimensional parameter. In many cases, structural parameters of economic interest appear
as functionals of that underlying unknown function. Examples are policy effects, average

(weighted) partial effects, consumer surplus, measures of substitution patterns, and various
counterfactuals from structural models. It is quite common for the estimation problem to
be high-dimensional. There might be many control variables which we want to include in
a flexible way along with the endogenous regressor, or a structural model may depend on
many variables, e.g. in the demand for differentiated goods framework, the demand function
depends on the vector of prices and product characteristics of all products in the market. In
this paper, we are interested in estimation and inference on structural economic objects in
presence of endogeneity when the dimensionality of the problem is (moderately) high.

Machine learning (ML) literature provides a collection of modern statistical tools for flexible
estimation of various statistical objects that are especially powerful in high-dimensional settings.
However, standard ML estimators, such as Lasso, boosting, or Neural Networks are unable
to pick up causal relationships when endogenous regressors are present (see e.g., Hartford
et al., 2017). On the other hand, there is a new line of research in machine learning and
computer science communities that offers a series of new algorithms that both addresses
endogeneity and can be applied in high-dimensional environments, we refer to them as MLIV
estimators. These algorithms are data-driven and exploit various forms of regularization to
ameliorate the ill-posedness of the problem while maintaining the functional form flexibility.
Examples include the DeepIV estimator (Hartford et al., 2017), the Kernel IV regression (Singh
et al., 2019), the Dual IV regression (Muandet et al., 2019), the DeepGMM estimator (Bennett
et al., 2019), the Double Lasso estimator of Gold et al. (2020), a series of estimators constructed
using the minimax framework of Dikkala et al. (2020), and the boostIV estimator (Bakhitov
and Singh, 2021). The goal of this paper is to use these novel methods to estimate and perform
inference on various economic objects of interest that appear as functionals of the underlying
structural function under endogeneity.

As standard ML algorithms, MLIV estimators produce inherently biased estimates. The
main source of bias is regularization and/or model selection needed to balance out squared bias
and variance to obtain overall small mean squared errors. In the NPIV context, regularization
is particularly important as it plays a dual role. First, it allows to deal with the curse of
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dimensionality, as in the case of standard ML estimators. Second, it is necessary to solve
the ill-posed problem. As a result, regularization and/or model selection bias leads to poor
coverage unless it is corrected for. Furthermore, the bias term will propagate into the functional
estimate if we simply plug-in an MLIV estimator into the functional formula. As Chernozhukov
et al. (2018a) point out, squared bias of plug-in estimators can shrink slower than the variance,
leading to extremely poor confidence interval coverage.

In this paper, we provide an approach for performing valid asymptotic inference on func-
tionals of MLIV estimators. Our method bases off of the automatic debiased machine learning
approach of Chernozhukov et al. (2020b), hereafter CNS, but focuses on the endogenous setting
rather than the exogenous one. To get rid of the regularization and/or model selection bias, we
debias the moment function identifying the functional of interest. The debiasing is automatic
in the sense that it only depends on the form of the identifying moment function but not on
the form of the bias correction term. The key to bias correction is Neyman orthogonality of the
moment function which ensures that the estimated moment function has a zero derivative
with respect to the MLIV estimator. Intuitively it means that the estimated moment function is
insensitive to local perturbations around the true value of the estimated function, which allows
to plug-in noisy estimates in the moment condition without strongly violating it. We construct
Neyman orthogonal, or simply debiased, moment functions by adding the influence function
for the MLIV estimator to the identifying moment functions. Then we simply plug-in the
MLIV estimator in the debiased moment function to get the debiased estimate of the functional
of interest.

We focus our attention on regular functionals with the finite semiparametric asymptotic
variance bound necessary for root-n estimability. We allow for both linear and non-linear
functionals, though the conditions for root-n rate are much tighter for the nonlinear case. When
the semiparametric asymptotic variance bound is finite, the influence function adjustment
term depends on the Riesz representer (RR) for the identifying moment function in case of a
linear functional or the derivative of the identifying moment condition in case of a nonlinear
functional. Typically, in the NPIV framework, the form of the RR is either very complicated to
derive or even unknown. We exploit the orthogonality of the identifying moment condition
and provide a penalized GMM (PGMM) framework to estimate the RR. This allows us to learn
the RR directly from the identifying moment conditions without requiring the knowledge of
the form of the RR, hence, we refer to this estimator as automatic. The PGMM estimator of the
RR is novel and, to the best of our knowledge, is the only automatic estimator of the RR in the
NPIV framework. The PGMM estimator is a generalization of the Lasso minimum distance
estimator of CNS as it allows for a more general form of the influence function.
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We derive the convergence rate for the PGMM estimator and provide conditions for root-n
consistency and asymptotic normality of the debiased MLIV estimator of the functional of
interest. To accommodate for a large variety of MLIV estimators, we only require certain mean
square consistency and convergence rates for MLIV estimators. The required conditions differ
quite drastically for linear and nonlinear functionals. For linear functionals it is sufficient to
require the MLIV estimator to converge at some positive rate in the projected mean square
norm. It is well-known that NPIV estimators exhibit much faster convergence rates in the
projected norm rather than in the standard mean square norm due to ill-posedness (see e.g.,
Blundell et al., 2007; Chen and Pouzo, 2012; Chen and Pouzo, 2015). However, for nonlinear
functionals it is necessary to account for the linearization bias which requires the convergence
rate to be faster than n−1/4, which is a standard condition in the semiparametric literature

(Newey, 1994). Moreover, the presence of nonlinearities in the identifying moment function
results in the convergence rate condition in the standard mean square norm rather than the
projected norm, which makes it harder to satisfy in practice.

We apply our approach to learning the conditional demand derivative functional in the
nonparametric demand for differentiated products framework (Berry and Haile, 2016; Com-
piani, 2018; Gandhi et al., 2020) that has been gaining popularity in the last years as an alterna-
tive to the standard parametric procedure of Berry et al. (1995), hereafter, BLP. The conditional
demand derivative with respect to own price has a nice economic interpretation which has a
close connection with traditional parametric models such as logit and nested logit. Under logit,
the conditional demand derivative becomes just the logit price coefficient, while under nested
logit the derivative consists of two parts: (i) the direct effect from the price coefficient and (ii)
the indirect effect coming from the nesting structure. We use these insights and run Monte
Carlo experiments where we nonparametrically estimate the conditional demand derivative
under logit and nested logit data generating processes. We show that the plug-in estimates
are badly biased and have extremely poor coverage as a result. Furthermore, we demonstrate
that our debiasing procedure not only significantly reduces bias, but also achieves close to the
nominal level coverage.

We use the Monte Carlo results as a basis for our empirical application where we estimate
the conditional demand derivative using scanner data. First, we demonstrate that applying
machine learning allows to uncover more complicated substitution patterns compared to tradi-
tional parametric estimators. The nested logit estimates of the conditional demand derivative
do not exhibit much variation across products and are close the logit price coefficient estimate.
While, ML estimates have substantial variation across products and state that similar products
have similar responses to price changes. Moreover, our empirical results are coherent with the
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evidence from the Monte Carlo experiments: plug-in estimates are biased upwards and have
smaller standard errors compared to the debiased estimates.

This paper connects several strands of literature. First, since the focus of the paper is
functionals of nonparametric quantities, our methodology relates to the literature on semi-
parametric statistical theory (Van der Vaart, 1991; Bickel et al., 1993; Newey, 1994; Robins
and Rotnitzky, 1995; Van der Vaart, 2000). These papers focus on functionals of densities or
regressions in low dimensional settings, while in our paper we focus on functionals of MLIV
estimators over domains that may include low, moderate, and high dimensional objects. A
more recent work by Chernozhukov et al. (2020a) generalizes and extends the insights from the
classical theory by constructing Neyman orthogonal moment conditions allowing for a wide
range of ML estimators1. We follow Chernozhukov et al. (2020a) and use Neyman orthogonal
moment functions with the influence function adjustment term for the NPIV estimator from
Ichimura and Newey (2017).

Riesz representers are important objects in semiparametric theory as they appear in calcu-
lations of the asymptotic variance of functionals of nonparametric quantities (Ichimura and
Newey, 2017; Chernozhukov et al., 2020a). For the same reason they appear in the influence
function calculations, which makes estimation of RRs a cornerstone of the debiased machine
learning literature. Chernozhukov et al. (2019) and CNS propose Lasso and Dantzig minimum
distance estimators of the RR based on the sparse approximation assumption. While the
latter provides asymptotic results for regular functionals, the former provides finite sample
analysis and also allows for irregular functionals. A recent paper by Chernozhukov et al. (2021)
proposes to use a neural network to estimate the RR. On the other hand, Chernozhukov et
al. (2020c) take a different approach and allow for a more general estimator of the RR based
on the minimax framework of Dikkala et al. (2020). While the aforementioned papers can be
applied only in exogenous settings, the PGMM estimator we propose allows to estimate the
RR under endogeneity.

This work also contributes to the literature on estimation and inference on conditional
restrictions models which nest the NPIV regression problem as a special case. Several NPIV
estimators are now available including kernel-based estimators (Hall and Horowitz, 2005;
Darolles et al., 2011) and series or sieve estimators (Newey and Powell, 2003; Blundell et
al., 2007; Chen and Pouzo, 2012; Chen et al., 2021). There are several papers focusing on linear
regular functionals of NPIV estimators, see e.g., Ai and Chen (2003), Santos (2011), and Severini
and Tripathi (2012) among others. Chen and Pouzo (2015) and Chen and Christensen (2018)

1Chernozhukov et al. (2020a) provide high-level conditions for inference on functionals for conditional moment
restriction models that nest the NPIV problem (see Theorem 19). Our results are complementary as we provide
an estimator of the RR and give low-level conditions to derive its convergence rate.
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give conditions for pointwise and uniform asymptotic normality, respectively, of possibly
nonlinear functionals of the sieve NPIV estimator. The results presented in this paper are
complementary to the results on inference on functionals of NPIV estimators.

The paper also touches on the growing literature on flexible demand estimation in differen-
tiated product markets. Compiani (2018) follows the nonparametric identification arguments
of Berry and Haile (2014) and demonstrates the performance of the NPIV estimator in a very
simple case of two products with two characteristics. He uses Bernstein polynomials along
with shape restrictions to alleviate the curse of dimensionality and nonparametrically estimate
the inverse demand function. Methodology developed by Gandhi et al. (2020), hereafter GNT,
is complementary, and allows the practitioner to apply it to more realistic settings. They resort
to the dimensionality reduction idea of Gandhi and Houde (2019) which mitigates the curse of
dimensionality and allows them to stay within the standard NPIV framework. Lu et al. (2019)
consider a similar framework to GNT, but they focus on applications with large amounts of
products instead of large amount of markets. However, both approaches still break down
when the characteristics space becomes moderate- and/or high-dimensional. In attempt to
address high-dimensionality in the nonparametric environment, Bakhitov et al. (2020) assume
that consumer choices depend on a small set of product “features”, which can be represented
by some possibly nonlinear transformations of product characteristics, implying a sparsity
condition on the true data generating process. Fosgerau et al. (2020) and Monardo (2021) con-
sider a different class of inverse product differentiation models which generalize the inverse
demand function of the nested logit model.

The remainder of the paper is organized as follows. Section 2 briefly introduces the NPIV
framework, discusses practical issues, and describes various MLIV estimators. In Section 3
we describe the objects of interest and provide several economic examples. We also illustrate
how to construct the debiased estimator and the estimator of its asymptotic variance. Finally,
we introduce the PGMM estimator of the RR. Section 4 gives conditions necessary to derive a
convergence rate for the PGMM estimator. Section 5 gives conditions for root-n consistency and
asymptotic normality of the debiased estimator for linear functionals. In Section 6 we introduce
additional conditions necessary to extend our results to nonlinear functionals. Section 7
examines the performance of the debiased estimator in a simple Monte Carlo exercise. In
Section 8 we introduce the nonparametric demand estimation framework and estimate the
conditional demand derivative functional using both simulated and real data. Section 9 gives
conclusions and provides possible extensions. All additional details and proofs are left for the
Appendix.
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Notation: For a vector x ∈ Rn, let |x|1, ||x||, and ||x||∞ denote its `1-, `2-, and `∞-norms respec-
tively. For an m× n matrix A, we define ||A||∞ = maxj,k |Ajk|. Let ||A||`∞ = maxi

∑n
j=1 |Aij|

denote the induced `∞-norm of A. For S ⊆ {1, . . . , n} let xS be the modification of x that places
zeros in all entries of x whose index does not belong to S. For a random variable X , let L2(X)

denote a space of all measurable and square integrable functions.

2 Flexible estimation under endogeneity

We start with a brief discussion of the NPIV framework and consequences of ill-posedness
of the NPIV problem for practitioners and then we categorize and describe various MLIV
algorithms.

2.1 Nonparametric IV framework

Consider the nonparametric instrumental variables framework of Newey and Powell (2003),

Y = γ0(X) + ε, E[ε|Z] = 0,

where Y is an explanatory variable, X is a vector of potentially endogenous regressors, Z is a
vector of instruments, and ε is an error term. Suppose that γ0 is identified and the completion
condition holds, i.e. for all measurable real functions δ with finite expectation,

E[δ(X)|Z] = 0 ⇒ δ(X) = 0.

Intuitively, this condition implies that there is enough variation in the instruments to explain
the variation in the endogenous covariates. For example, in the linear model the completeness
condition is equivalent to the usual rank condition.

The unknown function γ0 solves the following integral equation,

E[Y |Z] =
∫
γ0(x)f(x|z)dx, (1)

where f denotes the conditional pdf ofX given Z. Solving for γ directly is an ill-posed problem
as it involves inverting linear compact operators (see e.g., Kress, 1989). Ill-posedness implies
that the solution to (1) is not continuous in E[Y |Z] and f(x|z). This leads to certain estimation
issues as one cannot construct an estimator of γ by plugging in consistent estimators of E[Y |Z]
and f(x|z) and approximately solving for γ.
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A well-known solution to the ill-posed inverse problem is regularization, which means
constructing an estimator of γ0 in a way that ill-posedness does not affect consistency. In essence,
regularization allows us to avoid estimation of higher-order terms that drive up the variance.
There are several traditional ways to regularize a solution to (1). For example, Kress (1989)
proposes a very intuitive form of regularization where γ0 is replaced with a finite dimensional
approximation. Another popular method is to use Tikhonov regularization (see e.g., Hall and
Horowitz, 2005; Carrasco et al., 2007).

Ill-posedness negatively affects convergence rates of the NPIV estimators making them
slower than of the standard nonparametric regression counterparts. To illustrate the issue,
we appeal to an important quantity called the measure of ill-posedness which measures how
much the conditional expectation in (1) smoothes out γ. Let T : L2(X) 7→ L2(Z) denote the
conditional expectation operator given by

Tγ = E[γ(X)|Z].

Let τ denote the measure of ill-posedness defined as

τ = sup
γ∈Γ

||γ − γ0||
||T (γ − γ0)||

,

where Γ ⊆ L2(X) and ||T (γ − γ0)|| =
√

E{E[γ − γ0|Z]}2 is the projected mean square norm.
Typically, τ grows with n, but for simplicity assume that τ is bounded, then

||γ − γ0|| ≤ τ ||T (γ − γ0)||.

Thus, the convergence rate in the mean square norm is always slower than the convergence
rate in the projected norm. On the other hand, it is possible to obtain fast rates in the projected
norm even when the mean square rate is slow as its definition sidesteps ill-posedness (see e.g.,
Blundell et al., 2007; Chen and Pouzo, 2012; Dikkala et al., 2020).

2.2 Practical concerns

Standard NPIV methods provide flexible and intuitive approaches to nonparametric estimation
under endogeneity. However, the ill-posedness of the problem poses several challenges to
applied researchers as it renders the NPIV estimation problem much more difficult compared
to the standard nonparametric regression.

From the practitioner’s standpoint, the ill-posed inverse problem limits what can be learnt
about γ0 leading to noisy estimates. The level of ill-posedness is associated with the amount
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of information the data contain about the structural function and how accurately it can be
estimated. Horowitz (2011) points out that only low-order approximation terms can be esti-
mated with desirable precision, which is not a fallacy of the estimation method, but rather
a characteristic of the estimation problem itself. In other words, there might not be enough
variation in instruments to explain the variation in higher-order approximation terms, mean-
ing that we cannot uncover important nonlinearities from the data. Using a simple Gaussian
example, Newey (2013) illustrates the connection between the ill-posedness of the problem
and the instrument strength. He demonstrates that the stronger the instrument (the higher
the reduced form R2), the lower the variance of estimates of coefficients of higher-order terms
relative to coefficients of lower-order terms. As a result, not only regularization is essential to
avoid highly variable estimates, especially when the sample size is relatively small, but also is
the strength of constructed instruments.

Another implementation concern is the curse of dimensionality which affects all non-
parametric estimators. In the NPIV context, this problem becomes more acute due to the
ill-posedness and its effect on convergence rates. For example, in the severely ill-posed case, it
might not be possible to obtain a polynomial in n rate, only polynomial in log(n) (see Blundell
et al., 2007; Darolles et al., 2011; Chen and Pouzo, 2012). Consequently, even if the estimation
problem is not (moderately) high-dimensional, variance of NPIV estimators can be much
higher than that of standard nonparametric regression estimators.

2.3 Review of MLIV estimators

One promising solution to the aforementioned practical concerns is to appeal to the ML
literature which offers a plethora of contemporary data-driven algorithms with various reg-
ularization schemes. However, standard ML estimators, such as Lasso, boosting, or Neural
Networks are unable to pick up causal effects from endogenous regressors (see e.g., Hartford
et al., 2017). This is not a surprise, since the goal of ML estimators is to fit the conditional
expectation E[Y |X], rather than to estimate the structural function γ or any causal effects
associated with its shape. We provide an example illustrating this phenomenon in Appendix
A.

However, despite standard ML algorithms fail in presence of endogeneity, there is a new
line of research in machine learning and computer science communities that offers a series
of new algorithms that both address endogeneity and can be applied in high-dimensional
environments. These MLIV algorithms are data-driven and exploit sophisticated regularization
schemes that allow to solve the ill-posed problem while maintaining functional form flexibility.
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MLIV estimators can be split into three categories: (i) primal, (ii) dual, and (iii) minimax
methods. Primal methods build upon the standard primal formulation of the NPIV estimation
problem. It means that in population γ0 solves

γ0 = argmin
γ∈Γ

E[(Y − E[γ(X)|Z])2]. (2)

This is the exact problem the series NPIV estimator solves as well. Hartford et al. (2017) were
the first one to suggest using ML to estimate γ in the NPIV setting. Instead of modeling the
first stage, they use a Neural Network to model the conditional distribution of endogenous
regressors given instruments. Then they plug the estimated pdf in the sample analog of (2)
and fit another Neural Network to estimate γ. The Double Lasso estimator of Gold et al. (2020)
can be seen as a nonparametric series estimator with Lasso in both first and second stages. The
Kernel IV (KIV) regression of Singh et al. (2019) is a very powerful estimator that allows to
easily deal with high-dimensional inputs without explicitly constructing basis functions or
features, which is achieved using the kernel trick. The estimation procedure can be seen a
nonlinear generalization of the standard 2SLS estimator, where in both stages instead of the
linear regression we run the regularized kernel regression. Bakhitov and Singh (2021) propose
a boosting based algorithm to estimate the structural function. The algorithm is very intuitive
and resembles an iterative version of the standard 2SLS estimator. Moreover, the approach is
data driven, meaning that the researcher does not have to make a stance on neither the form of
the target function approximation nor the choice of instruments.

The second group of algorithms focuses on the dual formulation of the estimation problem2.
The Dual IV (Muandet et al., 2019) uses the dual form of the NPIV estimation problem in

(2). There are several advantages to using the dual formulation as it collapses the two-stage
estimation problem to a one-stage problem. It means, first, that the target function is identified
under weaker conditions, completeness is no longer needed, and second, there is no need
to model the conditional distribution of X given Z. Bennett et al. (2019) consider the dual
version of the GMM IV problem, which can be though of as a natural extension of the Dual IV
framework.

Finally, algorithms in the last group are based off of the minimax approach of Dikkala
et al. (2020). The main idea is to use violations of the unconditional moment condition as the
criterion function, i.e.

γ0 = argmin
γ∈Γ

max
f∈F

E[(Y − γ(X))f(Z)]. (3)

2We do not present the dual formulation here as it involves additional derivations. We refer the reader to
Muandet et al. (2019) for more details.
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Note that the minimax problem in (3) does not involve the conditional expectation similar to
the dual formulation. Combined with various penalties the minimax criterion function gives
rise to a plethora of algorithms to estimate γ. Despite having a different criterion function, the
minimax estimator can be asymptotically interpreted as the minimum distance sieve estimator
of Chen and Pouzo (2012). However, the formulation is more general and does not restrict Γ
and F to be linear sieve spaces.

In practice, however, the structural function itself is rarely an object of interest, rather it
is some economically meaningful object like average partial effects. Consider, for example, a
demand estimation problem. The demand level itself does not bear a lot of economic meaning
while objects like partial effects of demand shifters, consumer surplus, price and income
elasticities or diversion ratios are potential objects of interest. These quantities are functionals
of the structural function.

3 Learning functionals of MLIV estimators

3.1 Functionals of interest and economic examples

This paper focuses on estimation and inference on functionals of a flexible (i.e. nonparametric)
structural function γ0 in presence of endogenous regressors, i.e. within the framework of the
nonparametric instrumental variables model. Let Wi ≡ (Yi, Xi, Zi) be a data observation. Let
m(W, γ) denote a functional of γ that depends on an observation W . We consider parameters
of interest of the form

θ0 = E[m(W, γ0)].

For expositional convenience, in this Section we will focus on functionals that depend linearly
on γ. In Section 6 we extend our results to nonlinear functionals. The object of interest θ0 is an
expectation of some functional m(W,γ0) over the data distribution. Hence, we are interested
in mean effects, which restricts a set of possible functionals of interest, such as, for example, a
simple evaluation functional θ0 = γ0(X̄), where X̄ ∈ supp(X). However, our framework is
still general enough and covers a wide range of economically important objects.

Below, we give several examples of the types of objects under consideration, including both
linear and nonlinear functionals.

Example 1. Weighted average derivative.
In this example, X is a vector of continuous endogenous regressors and

θ0 = E
[
ω(X)

∂γ0(X)

∂X1

]
,
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which is a weighted average derivative of γ0 with respect to X1 with known weight ω(X) as in
Ai and Chen (2007). Here m(W, γ) = ω(X)∂γ(X)/∂X1, which is linear in γ. When ω(X) = 1, θ0
becomes an average partial effect of X1 on γ0(X).

Example 2. Average policy effect.
The object of interest here is the average effect of changing the covariates according to some
transformation x 7→ g(x),

θ0 = E[γ0(g(X))− γ0(X)],

where m(W, γ) = γ0(g(X))− γ0(X) is a linear functional. Thus, θ0 measures the average policy
effect of a counterfactual change of covariate values.

Example 3. Average consumer surplus (CS) and deadweight loss (DWL).
This example is based on Hausman and Newey (1995) and its adaptation to the NPIV setting
by Chen and Christensen (2018). Here, X = (P, I,X2), where P is product price, which is
potentially endogenous, I is consumer income, and X2 includes additional covariates. Let
S(p0, ι, x2) denote the exact CS from a price change from p0 to p1 at income level ι and covariate
values x2. Then S(p0, ι, x2) is a solution to

∂S(p(u), ι, x2)

∂u
= −γ0(p(u), ι− S(p(u), ι, x2), x2)

∂p(u)

∂u
, S(p(1), ι, x2) = 0,

where p : [0, 1] 7→ R is a twice continuously differentiable price path with p(0) = p0 and
p(1) = p1. Let D(p0, ι, x2) denote the corresponding DWL functional given by

D(p0, ι, x2) = S(p0, ι, x2)−
(
p1 − p0

)
γ0(p

1, ι, x2).

The objects of interest are

θCS
0 = E[ω(I,X2)S(p(u), I,X2)],

θDWL
0 = E[ω(I,X2)D(p(u), I,X2)] = θCS

0 − E[ω(I,X2)(p
1 − p0)γ(p1, I,X2)],

where ω is a weighting function that does not depend on the price level. Unless demand is
independent of income, the exact CS and DWL are typically nonlinear functionals of γ0.
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3.2 Orthogonal moment condition

Suppose that we are given γ̂, an MLIV estimator of γ0. A natural approach to estimate θ0 is to
simply plug-in γ̂ into m and replace the expectation with the sample average,

θ̂plug-in =
1

n

n∑
i=1

m(W, γ̂).

However, the plug-in estimator will not be root-n consistent if the first-order bias does not
vanish at root-n rate, which is the case when γ̂ involves regularization and/or model selection

(Chernozhukov et al., 2020a). In the NPIV model, regularization is essential to dealing with
ill-posedness rendering all NPIV/MLIV estimators regularized estimators.

Figure 1 illustrates the issue. The yellow histogram represents the simulated distribution of
the standardized plug-in estimator, (θ̂plug-in−θ0)/std(θ̂plug-in). The estimator is badly bias, shifted
to much to the right relative to zero. Moreover, the shape of the distribution is quite different
from the standard normal distribution (depicted by the red curve), which would approximate
the asymptotic distribution if bias was negligible. In contrast, the simulated distribution of the
standardized debiased estimator that we propose illustrates that the estimator is approximately
unbiased (centered around zero) and well approximated by the standard normal distribution,
which insures the validity of the inference procedure.

Figure 1. Distributions of plug-in and debiased estimates. The graph shows distributions of the
standardized plug-in and debiased estimates of the conditional demand derivative functional from
Section 8.3. The data is generated according to the logit model.
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The reason for the plug-in estimator to be affected by the first-order bias is the fact that the
moment condition defining θ0 is not orthogonal to local perturbations of γ around γ0. Namely,
let δ be a local perturbation around γ0, then the Gateaux derivative in the direction δ is

∂

∂τ
E[m(W, γ0 + τδ)]

∣∣∣∣
τ=0

= E[m(W, δ)] 6= 0.

Thus, obtaining an orthogonal moment condition is a crucial step for establishing our results.
We consider functionals m(W,γ) where there exists a function α0(Z) with E[α2

0(Z)] <∞
and

E[m(W, γ)] = E[α0(Z)γ(X)] for all γ with E[γ2(X)] <∞. (4)

As discussed in Ichimura and Newey (2017), if there exists v(X) with E[v2(X)] < ∞ and
E[m(w, γ)] = E[v(X)γ(X)], then the existence of α0(Z) requires v(X) = E[α0(Z)|X ]. As pointed
out in Severini and Tripathi (2012), this is a necessary condition for root-n estimability of θ0.
Moreover, by the Riesz representation theorem, the existence of such α0(Z) is equivalent to
E[m(W, γ)] being a mean square continuous functional of γ. Henceforth, we refer to α0(Z) as a
Riesz representer. Newey (1994) shows that mean square continuity of E[m(W, γ)] is equivalent
to the semiparametric efficiency bound of θ0 being finite. Thus, our approach focuses on
regular functionals. Similar uses of the Riesz representation theorem can be found in Ai and
Chen (2007), Ackerberg et al. (2014), Hirshberg and Wager (2020), and CNS among others.

Ichimura and Newey (2017) establish the form of the orthogonal moment function for NPIV
estimators

ψ(W, θ, γ, α) = m(W,γ)− θ + α(Z)[Y − γ(X)], (5)

where α(Z)[Y − γ(X)] is the influence function. Note that the moment function in (5) is
Neyman orthogonal to local perturbations (δ, β) of (γ0, α0) such that

∂

∂τ
E[ψ(W, θ, γ0 + τδ, α0 + τβ)]

∣∣∣∣
τ=0

= E[m(W, δ)]− E[α0(Z)δ(X)] + E[(Y − γ0(X))β(Z)] = 0,

where the first two terms cancel out by the Riesz representation theorem and the last term is
zero by the exogeneity condition. This property makes the orthogonal moment condition an
excellent basis for constructing a debiased estimator of θ0 in the NPIV setting where estimators
are typically regularized. Similar uses of the Neyman-orthogonal moment condition can be
found in Chen et al. (2021) for NPIV sieve estimators and in Gautier and Rose (2021) for the
high-dimensional linear IV regression.
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Moreover, the exogeneity condition and iterated expectations imply

E[α(Z)(Y − γ0(X))] = E[α(Z)E[Y − γ0(X)|Z]] = 0

for any α(Z), meaning that the expectation of the influence function is zero regardless of α.
This implies

E[ψ(W, θ0, γ0, α)] = E[m(W, γ0)]− θ0 + E [α(Z)[Y − γ0(X)]] = 0,

which allows us to use (5) to estimate θ0. The debiased estimator θ̂ can be constructed by
plugging in γ̂ and α̂ into the moment function ψ(W, θ, γ, α) in place of γ and α and solving for
θ̂ from setting the sample moment ψ(W, θ, γ̂, α̂) to zero.

Note that the debiased estimator θ̂ requires an estimator of α0. Typically in the NPIV setting,
the form of α0 is very complicated to derive or even unknown. Consider the weighted average
derivative example from above. The RR is a solution to the following integral equation

E[α0(Z)|X] = −∂{f0(X)ω(X)}/∂X1

f0(X)
,

where f0(X) is the marginal pdf of X . As a result, it is desirable to have a flexible approach
for automatic estimation of the RR. The next subsection describes how to construct such an
estimator.

3.3 Estimation of the Riesz representer

Chernozhukov et al. (2020a) show that we can exploit the orthogonality of the debiased moment
function ψ(W, θ, γ, α) to estimate α0. The Gateaux derivative of ψ(W, θ, γ, α) in the direction δ is

E[ψγ(W, θ0, δ, α0)] =
∂

∂τ
E[ψ(Wi, θ0, γ0 + τδ, α0)]

∣∣∣∣
τ=0

=
∂

∂τ
E [m(W, γ0 + τδ)− θ0 + α0(Z)[Y − γ0(X)− τδ(X)]]

∣∣∣∣
τ=0

= E[m(W, δ)− α0(Z)δ(X)] = 0, (6)

where the last equality comes from m(W,γ) being linear in γ. This can be thought of as a
population moment condition for α0.

Several recent papers propose different Riesz representer estimators based on the moment
condition in (6) under exogeneity. CNS use minimum distance Lasso and Dantzig estimators.
A recent follow-up paper by Chernozhukov et al. (2021) extend the CNS’ approach and use a
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neural network to estimate α0. Chernozhukov et al. (2020c) take a different approach and allow
for a more general learner of α0 based on the minimax framework of Dikkala et al. (2020). It is
important to highlight once more that the aforementioned approaches allow for estimation of
the Riesz representer only under exogeneity, when α0 is a function of X rather than Z.

We assume that the Riesz representer estimator takes the form α̂ = b(Z)′ρ̂, where b(Z) is
a p-dimensional dictionary of basis functions with p being possibly much larger than n. Let
d(X) be a q-dimensional dictionary of basis functions that represent deviations from γ0. Using
d(X), we can construct a vector of moment conditions to estimate ρ. Let dj(X) be an element of
d(X), then we can form a sample moment condition corresponding to the population moment
condition (6) by replacing the expectation with a sample average and α0(Z) with b(Z)′ρ to
obtain

ψ̂γ(dj, ρ) =
1

n

n∑
i=1

{m(Wi, dj)− dj(Xi)b(Zi)
′ρ} = 0, j = 1, . . . , q. (7)

Note that we require q ≥ p to ensure identification and estimability of ρ.
To allow for a high-dimensional α specification, we follow Caner and Kock (2018) and use

the penalized GMM (PGMM) framework. Let ψ̂γ(ρ) = (ψ̂γ(d1, ρ), . . . , ψ̂γ(dq, ρ))
′ where ψ̂γ(dj , ρ)

is defined in (7). Then a solution to the PGMM problem takes the form

ρ̂L = argmin
ρ∈Rp

ψ̂γ(ρ)
′Ω̂qψ̂γ(ρ) + 2λn|ρ|1, (8)

where Ω̂q = Ω̂/q, Ω̂ is a q × q positive semi-definite matrix, and 2λn|ρ|1 is a penalty term. This
framework allows for q ≥ p > n, and basically is a Lasso extension of the standard GMM.

Let Ĝ = 1
n

∑n
i=1 d(Xi)b

′(Zi) and M̂ = 1
n

∑n
i=1m(Wi, d) be unbiased estimators of G =

E[d(X)b′(Z)] and M = E[m(W,d)], respectively. Then we can rewrite (8) in matrix form as

ρ̂L = argmin
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn|ρ|1. (9)

The estimator ρ̂L can be interpreted as a minimum distance version of the high-dimensional
GMM estimator of Caner and Kock (2018). Note that we cannot use the standard optimal
weight matrix as for the low-dimensional GMM due to its rank deficiency. Implementation
details can be found in Appendix C.

3.4 Informal preview of estimation and inference results

The estimation procedure can be summarized in the following pseudo-algorithm:
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1. We follow CNS and use cross-fitting to avoid (i) potentially severe finite sample bias
due to the double use of data and (ii) regularity conditions based on γ̂ and α̂ being in
Donsker class, which ML estimators are usually not. Assuming the data {W}ni=1 is i.i.d.,
let I`, ` = 1, . . . , L, be a partition of the observation index set {1, . . . , n} into L distinct
subsets of about equal size. Let n` denote the number of observations in fold `.

2. For each data fold ` = 1, . . . , L, we obtain estimates γ̂` and α̂` that are constructed from
the observations not in I`. In particular, the RR estimate is of the form α̂` = b(Z)′ρ̂`, where

ρ̂` = argmin
ρ∈Rp

(M̂` − Ĝ`ρ)
′Ω̂q(M̂` − Ĝ`ρ) + 2λn|ρ|1,

with Ĝ` =
1

n−n`

∑
i 6∈I` d(Xi)b

′(Zi) and M̂` =
1

n−n`

∑
i 6∈I` m(Wi, d).

3. We construct the estimator θ̂ by setting the sample average of ψ(W, θ, ĥ`, α̂`) to zero and
solving for θ. This estimator θ̂ and the associated asymptotic variance estimator V̂ have
the following explicit forms

θ̂ =
1

n

L∑
`

∑
i∈I`

{m(Wi, γ̂`) + α̂`(Zi)[Yi − γ̂`(Xi)]} (10)

V̂ =
1

n

L∑
`=1

∑
i∈I`

ψ̂2
i`, ψ̂i` = m(Wi, γ̂`)− θ̂ + α̂`(Zi)[Yi − γ̂`(Xi)].

Next, we informally discuss the key conditions behind the asymptotic normality result.
Since θ̂ is constructed by plugging-in γ̂ and α̂ in the orthogonal moment condition, asymptotic
properties of θ̂ depend on the asymptotic behavior of γ̂ and α̂. First, to allow for a wide range
of MLIV estimators, we assume that γ̂ satisfies some projected mean square convergence rate
condition as an estimator of γ0. Specifically, we require

||T (γ̂ − γ0)|| = Op(κ
γ
n),

where κγn can be slower than root-n rate3. As pointed out in Section 2.1, it is possible to obtain a
fast rate under the projected mean square norm. Hence, it is a weak high-level assumption that
can be satisfied by a variety of MLIV estimators such as Double Lasso (Gold et al., 2020), Kernel
IV (Singh et al., 2019) and a series of estimators constructed using the minimax framework of
Dikkala et al. (2020).

3The result also holds for the standard mean square rate condition, i.e. ||γ̂ − γ0|| = Op(κ
γ
n), however, for

NPIV/MLIV estimators this rate is slower due to ill-posedness.
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The second condition is the mean square convergence rate of α̂. For the ease of exposition,
assume that α̂ satisfies the following mean square convergence rate condition,

||α̂− α0|| = Op(κ
α
n).

We derive an exact expression for καn in Section 4.
Finally, under quite standard regularity conditions asymptotic normality can be established

provided that
√
n||α̂− α0|| ||T (γ̂ − γ0)||

p−→ 0,

which is satisfied when
√
nκγnκ

α
n → 0. Hence, there is a trade-off between the convergence rates

of γ̂ and α̂. It is possible to allow for a slower convergence rate of γ̂ at the expense of a faster
convergence rate of α̂ and vice versa.

4 Properties of the PGMM estimator

In this section we provide the mean square convergence rate for the PGMM estimator α̂ which
is necessary for the asymptotic analysis of θ̂. We start by introducing some conditions.

Assumption 1. There exists a sequence of non-random matrices Ω such that

||Ω̂− Ω||∞ = op(1) and ||Ω||`∞ ≤ C <∞

for some constant C.

The first part of Assumption 1 is pretty standard and requires a consistent estimate of the
weight matrix. The second part of the assumption, as discussed in Caner and Kock (2018),
might be restrictive as it requires a high-dimensional matrix to be uniformly bounded in `∞-
norm, but for the notational convenience we keep it. The analysis in the paper will still go
through if we switch to a diagonal weight matrix as Caner and Kock (2018) suggest.

Note that the convergence rate of the PGMM estimator defined in (9) depends on the
convergence rates of Ω̂, Ĝ, and M̂ . Assumption 1 ensures that Ω̂ is consistent. To obtain a
convergence rate for Ĝ, we impose the following condition.

Assumption 2. There are constants Cb and Cd such that with probability approaching one,

max
1≤j≤p

|bj(Z)| ≤ Cb and max
1≤j≤q

|dj(X)| ≤ Cd.
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This condition implies

||Ĝ−G||∞ = Op(ε
G
n ), where εGn =

√
log(q)
n

.

Unlike the standard Lasso, the second moment matrix convergence rate depends on the number
of moments, i.e. the number of elements in d(X), rather than the number of elements in b(Z).

Let us hypothesize a convergence rate for M̂ .

Assumption 3. There is εMn such that

||M̂ −M ||∞ = Op(ε
M
n ), εMn → 0.

Next, we proceed by following CNS and impose a sparse approximation condition for α0.

Assumption 4. There exist C > 1 and ρ̄ with s̄ non-zero elements such that

||α0 − b′ρ̄||2 ≤ Cs̄ε2n,

where εn = max{εGn , εMn }.

Intuitively, this assumption controls the squared approximation error from using the linear
combination b′ρ̄ to approximate α0. Note that Assumption 4 does not necessarily require α0

to be equal to the linear combination of s̄ terms, it states that there exists a sparse ρ̄ with s̄

non-zero elements such that the approximation error is bounded by Cs̄ε2n. In other words,
Assumption 4 is general enough to accommodate both exact and approximate sparsity of α0.
Approximate sparsity allows for a large number of potential regressors (possibly much larger
than the sample size) when relatively few important regressors give a good approximation but
the identity of those few is not known, which is different from a standard series approximation
where typically the first s̄ regressors are assumed to achieve a good approximation (Bradic
et al., 2021). Thus, very sparse approximations allow to keep s̄ relatively small which results in
faster convergence rates. For a more detailed discussion of approximation bias conditions we
refer the reader to CNS.

Let S = {1, . . . , p}, Sρ be a subset of S with ρj 6= 0, and Sc
ρ be the complement of Sρ in S.

Let ρL be the population coefficients, i.e.

ρL = argmin
ρ∈Rp

(M −Gρ)′Ωq(M −Gρ) + 2εn|ρ|1.
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The PGMM estimator ρ̂L estimates the population coefficients ρL, which in turn might be
different from the approximation coefficients ρ̄. The following condition is essential to derive
the oracle inequality for ρ̂L, and hence, the convergence rate for α̂L = b′ρ̂L.

Assumption 5. Let G′ΩqG have its largest eigenvalue uniformly bounded in n and

φ2(s) = inf
{
δ′G′ΩqGδ

||δSρ||2
: δ ∈ Rp\{0}, |δSc

ρ
|1 ≤ 3|δSρ|1, |Sρ| ≤ s

}
> 0.

Assumption 5 is the modified population restricted eigenvalue condition as in Caner and
Kock (2018). To accommodate for the PGMM estimator the condition is imposed on G′ΩqG

rather than E[b(Z)b′(Z)] as in the classic restricted eigenvalue condition of Bickel et al. (2009).
Showing that its empirical counterpart is bounded uniformly away from zero will be used to
put a bound on the estimation error of α̂L.

Assumption 6. There is C > 0 such that with probability approaching one,

max
1≤j≤q

|m(W,dj)| ≤ C.

This condition is needed to put a bound on ||M ||∞ which is necessary to establish the oracle
inequality for ρ̂L, and hence, the convergence rate for α̂L. Moreover, note that by Assumption 6,
εn = εMn = εGn =

√
log(q)/n. This simplifies the analysis, but is not necessary for establishing

the results below. Also, let |ρ̄|1 ≤ Ā <∞. We can allow for the norm to grow with n at a certain
rate, however, it does not change the main results, hence, for simplicity we put a bound on |ρ̄1|.

Theorem 1. If Assumptions 2–6 are satisfied and εn = o(λn), then

||α̂L − α0||2 = Op(κ
α
n) where καn = s̄2λ2n.

The presence of endogeneity results in a slower rate of convergence for the RR estimator
compared to the exogenous counterpart in CNS. The MD Lasso estimator of CNS converges at
s̄λ2n rate, while the PGMM estimator is slower by a factor of s̄. Note that the convergence rate
only depends on the number of approximation elements s̄, but is independent of the number
of relevant moments.

Example 4. Consider the approximately sparse case where there are constants C and ξ > 0

such that
||α0 − b′ρ̄||2 ≤ C(s̄)−ξ.
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Let s̄ ≤ Cε
−2/(1+2ξ)
n . Then Assumption 4 is satisfied with

||α0 − b′ρ̄||2 = O
(
ε2ξ/(1+2ξ)
n

)
and

||α̂L − α0||2 = Op

(
ε−4/(1+2ξ)
n λ2n

)
.

Suppose that εn =
√

log(q)/n and let an be a sequence converging to infinity very slowly with
n, e.g. an = log(log(n)). Then for λn = anεn,

ε−4/(1+2ξ)
n λ2n =

(
log(q)
n

)− 2
1+2ξ

+1

a2n =

(
log(q)
n

) 2ξ−1
1+2ξ

a2n.

This rate is slower than the CNS rate

(
log(p)
n

) 2ξ
1+2ξ

a2n.

However, this difference becomes negligible for large enough ξ.

5 Asymptotic properties of linear functionals

In this Section, we provide conditions ensuring root-n consistency and asymptotic normality
of the debiased estimator θ̂. Under the specified conditions, we can do inference in a standard
way. First, we focus on linear functionals and then provide additional conditions to extend the
results to nonlinear functionals in Section 6.

We impose the following conditions.

Assumption 7. α0(z) and E [[y − γ0(x)]
2|z] are bounded and E [m(w, γ0)

2] <∞.

This assumption is purely technical, and we maintain it for simplicity.

Assumption 8.
∫
[m(w, γ̂)−m(w, γ0)]

2F0(dw)
p−→ 0 and ||γ̂ − γ0||

p−→ 0.

Assumption 9. ||T (γ̂ − γ0)|| = Op(κ
γ
n) with κγn → 0.

Assumption 8 allows for estimators γ̂ that are mean square consistent. Assumption 9
requires γ̂ to converge to γ0 in the projected norm at a rate equal to κγn which is typically slower
than root-n. Note that this condition is weaker than convergence in standard mean square
norm (see Section 2.1). This specification is general enough and allows for various MLIV
estimators.
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Assumption 10. εn = o(λn) and
√
nκαnκ

γ
n → 0.

This condition is sufficient to guarantee
√
n||α̂L−α0|| ||T (γ̂−γ0)||

p−→ 0, leading to asymptotic
normality of θ̂. Recall Example 4, in which case Assumption 10 requires

√
ns̄λnκ

γ
n = O

n1/2

(√
log(q)
n

) 2ξ−1
1+2ξ

anκ
γ
n

→ 0. (11)

Suppose κγn = n−dγ with dγ > 0. Then condition (11) implies

2ξ − 1

2(1 + 2ξ)
+ dγ >

1

2
.

Thus, as in CNS, there is a trade-off between between ξ, which determines how sparse the
approximation is, and dγ , the convergence rate of γ̂ in the projected norm. Note that it forces γ̂
to converge faster compared to CNS whose rate condition is 2ξ/(1 + 2ξ) + dγ > 1/2, which is a
consequence of the lower rate of convergence of α̂L. However, for large enough ξ, dγ can still
be arbitrary small.

Theorem 2. If Assumptions 2–10 are satisfied, then for ψ0(w) = m(w, γ0)− θ0 + α0(z)[y − γ(x)],

√
n(θ̂ − θ)

d−→ N (0, V ) and V̂ p−→ V = E
[
ψ2
0(w)

]
.

6 Nonlinear functionals

It is possible to extend the results from Section 5 to allow for estimation of θ0 = E[m(W,γ0)]

for nonlinear m(W, γ). The estimator is similar to the linear case except we estimate the RR of
the linearization of m(W,γ) leading to a different M̂ needed. In this Section, we show how
to construct such an estimator and provide additional conditions that are sufficient for valid
asymptotic inference for nonlinear functionals. As we mentioned in the introduction, due to
nonlinearity of m(W,γ), we have to impose restrictions on the convergence rate of γ̂ in terms
of the standard mean square norm, not the projected norm as in the linear case. We provide
more details below.

To account for nonlinearity ofm(W, γ) in γ, we assume linearity of the Gateaux derivative of
a nonlinear functional (see Chernozhukov et al., 2018b). To be more precise, let ζ be a deviation
from γ. We assume that m(W,γ) is Gateaux differentiable with the derivative D(W,γ, ζ),
meaning that

D(W, γ, ζ) =
d

dτ
m(W, γ + τζ)

∣∣∣∣
τ=0
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for a scalar τ , and that D(W, γ, ζ) is linear in ζ . Moreover, assume that α0(Z) satisfies

E[D(W, γ0, ζ)] = E[α0(Z)ζ(X)], for all ζ(X) with E[ζ2(X)] <∞. (12)

In other words, Equation (12) implies that D(W, γ, ζ) is a mean-square continuous functional
of ζ , which corresponds to Assumption 3 of Ichimura and Newey (2017), meaning that α0(Z)

is a Riesz representer of the Gateaux derivative of m(W,γ) with respect to γ evaluated at γ = γ0.
Thus, by the Riesz representation theorem, for D(W, γ0, d) = (D(W, γ0, d1), . . . , D(W, γ0, dq))

′,

M = E[D(W, γ0, d)] = E[α0(Z)d(X)].

We can construct an estimator θ̂ exactly like in Equation (10) except we need a different
estimator of α0(Z) based on (12). Despite γ enters m(W, γ) nonlinearly, the estimator will still
have zero first-order bias and be root-n consistent and asymptotically normal under suficient
regularity conditions. See Newey (1994), Ichimura and Newey (2017), and Chernozhukov
et al. (2020a) for more details.

An estimator α̂` can be constructed exactly as described in Section 3.3 except being based
on a different M̂`, where it is convenient to bring back the ` subscript. Let γ̂`,`′ be based on
observations not in either I` or I`′ , then the unbiased estimator M̂` is given by

M̂` = (M̂`1, . . . , M̂`q.)
′

M̂`j =
1

n− n`

∑
`′ 6=`

∑
i∈I`

D(Wi, γ̂`,`′ , dj),

where M̂`j is the Gateaux derivative of the moment function with respect to γ in the direction of
the jth dictionary function. This estimator uses further sample splitting where M̂ is constructed
by averaging over observations that are not used in γ̂`,`′ . This additional sample splitting allows
M̂` to depend on an estimator of γ as required when m(W, γ) is nonlinear in γ.

To establish the convergence rate for M̂`, we impose the following condition.

Assumption 11. There exist C, ε > 0 such that for any γ with ||γ − γ0|| ≤ ε:

(i) max1≤j≤q |D(W, γ, dj)| ≤ C;

(ii) sup1≤j≤q |E[D(W, γ, dj)−D(W, γ0, dj)]| ≤ C||γ − γ0||.

Lemma 1. Suppose that ||γ̂`, `′ −γ0|| = Op(κ
γ
n) for `, `′ = 1, . . . , L, and Assumption 11 is satisfied,

then
||M̂` −M`||∞ = Op(κ

γ
n).
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As CNS point out, the presence of the initial estimator γ̂`,`′ in M̂` makes the convergence
rate of ||M̂` −M`||∞ slower, κγn instead of

√
log(q)/n. Thus, εn = εMn = κγn, which requires λn to

converge to zero slightly slower than κγn. This also affects the convergence rate condition in
Assumption 10. Let us illustrate this effect using the set-up from Example 4. Under κγn = n−dγ

and εn = n−dγ , Assumption 10 requires

n1/2s̄λnn
−dγ = O

(
n1/2n−dγ

4ξ
1+2ξ

)
→ 0,

implying

dγ
4ξ

1 + 2ξ
>

1

2
.

This condition will be satisfied for any dγ > 1/4, given ξ is large enough. The result is similar
to CNS whose rate condition is dγ(4ξ + 1)/(1 + 2ξ) > 1/2. When κγn = log(n)−dγ , it is required
that

n1/2 log(n)−dγ
4ξ

1+2ξ → 0.

For large enough ξ, it implies that dγ must satisfy log(n)−dγ = o(n−1/4).

Assumption 12. There exist C, ε > 0 such that for any γ with ||γ − γ0|| ≤ ε,

|E[m(W, γ)−m(W, γ0)−D(W, γ0, γ − γ0)]| ≤ C||γ − γ0||2.

This condition controls the size of the linearization remainder in a linearization using the
Gateaux derivative. It implies that E[m(W,γ)] is Frechet differentiable in ||γ − γ0|| at γ0 with
derivative E[D(W, γ0 γ − γ0)].

Assumption 13. ||γ̂ − γ0|| = Op(κ
γ
n) and n1/4||γ̂ − γ0||

p−→ 0.

It is a standard assumption to accommodate for nonlinearity of m(W,γ). This might be
a very tight restriction to satisfy given overall slow convergence rates of NPIV estimators,
especially in the severely ill-posed case. However, as discussed in CNS, it is not known
whether it is possible to weaken the n−1/4 condition for nonlinear functionals, which goes back
to Newey (1994).

Theorem 3. If Assumptions 2–8, 10, and 11–13 are satisfied, then for ψ0(w) = m(w, γ0)− θ0 +

α0(z)[y − γ(x)],
√
n(θ̂ − θ)

d−→ N (0, V ), V̂
p−→ V = E

[
ψ2
0(w)

]
.
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7 Monte Carlo

In this Section, we present a simple Monte Carlo exercise illustrating the final sample perfor-
mance of the approach. We compare the performance of the debiased estimator to the plug-in
estimator.

Our design bases off of the MC design of Newey and Powell (2003), Santos (2012) and Chen
and Pouzo (2015), which we modify to allow for multiple regressors and instruments. To be
specific, we generate i.i.d. draws

Xij

Zij

uij

 ∼ N



0

0

0

 ,


1 0.8 0.5

0.8 1 0

0.5 0 1


 , j = 1, . . . , k

The true structural function is given by

γ(Xi) = exp{−0.5X ′
iXi},

which is the pdf of a product of k standard normal random variables. The response variable is
generated as

Yi = γ(Xi) + vi, vi =
k∑

j=1

uij,

where vi is a composite error term. Note that this form of the composite error term implies
that the degree of endogeneity, i.e. the correlation between each individual regressor Xj and v
diminishes with k. As a result, we do not consider k greater than 10. The functional of interest
is a weighted average of the form

θ = E[w(X)γ(X)], w(X) = X ′X.

We construct dictionaries b(Z) and d(X) using cubic polynomials with interaction terms.
Since dim(Xi) = dim(Zi) = k, both dictionaries have the same number of basis functions, i.e.
p = q. To estimate the structural function γ, we use the Double Lasso estimator of Gold et
al. (2020). We run 1000 replications for k = 2, 5, 10 and n = 100, 500, 1000, and 5000. Estimation
is carried out using five-fold (L = 5) cross-fitting.

The results are presented in Table 1. The plug-in estimator is labeled PI, while DB stands for
the debiased estimator. Bias is the absolute value of bias, SD is the standard deviation, RMSE
is the root mean square error, and Cvg denotes the coverage probability of a 95% nominal
confidence interval.

25



Table 1. MC results: weighted average derivative.
PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg

k = 2 n = 100 0.106 0.022 0.313 0.253 0.330 0.254 0.51 0.94
n = 500 0.092 0.028 0.080 0.073 0.122 0.078 0.26 0.94
n = 1000 0.068 0.028 0.058 0.050 0.090 0.058 0.21 0.92
n = 5000 0.044 0.028 0.023 0.023 0.050 0.036 0.07 0.77

k = 5 n = 100 0.107 0.028 0.259 0.249 0.280 0.251 0.69 0.96
n = 500 0.107 0.042 0.096 0.100 0.144 0.109 0.17 0.95
n = 1000 0.103 0.035 0.068 0.072 0.123 0.080 0.07 0.94
n = 5000 0.070 0.020 0.037 0.034 0.079 0.040 0.04 0.90

k = 10 n = 100 0.043 0.044 0.374 0.352 0.377 0.355 0.77 0.96
n = 500 0.030 0.009 0.144 0.141 0.147 0.141 0.56 0.96
n = 1000 0.027 0.013 0.096 0.096 0.100 0.097 0.33 0.96
n = 5000 0.029 0.013 0.044 0.046 0.053 0.048 0.06 0.94

In all cases the debiased estimator has a significantly smaller bias than the plug-in estimator.
Moreover, the coverage probabilities for the debiased estimator are pretty close to the nominal
level except for k = 2, n = 5000 case. On the other hand, larger bias of the plug-in estimator
results in poor coverage that is far from the nominal level for all cases. Furthermore, for all
cases the debiased estimator has a smaller RMSE, which is due to bias reduction. Overall, our
results are similar to Chernozhukov et al. (2020a), which indicates that our procedure is valid
and performs well in practice.

8 Application to nonparametric demand estimation

8.1 Model and estimation framework

In this Section, we introduce a new framework for demand estimation that follows Gandhi
et al. (2020) (hereafter, GNT). GNT is a flexible framework that combines the nonparametric
identification arguments of Berry and Haile (2014) with the dimensionality reduction tech-
niques of Gandhi and Houde (2019), which makes it applicable to real data sets with more than
two products unlike Compiani (2018) whose approach fails due to the curse of dimensionality.

We follow Berry and Haile (2014) and present a general model of demand first, later on
we will impose additional restrictions on the form of the indirect utility function as in GNT.
In market t, t = 1, . . . , T , there is a continuum of consumers choosing from a set of products
J = {0, 1, . . . , J} which includes the outside option. The choice set in market t is characterized
by a set of product characteristics χt partitioned as follows:

χt ≡ (xt, pt, ξt),
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where xt ≡ (x1t, . . . , xJt) is a vector of exogenous observable characteristics (e.g. exogenous
product characteristics or market-level income), pt ≡ (p1t, . . . , pJt) are observable endogenous
characteristics (typically, market prices) and ξt ≡ (ξ1t, . . . , ξJt) represent unobservables poten-
tially correlated with pt (e.g. unobserved product quality). Let X denote the support of χt.
Then the structural demand system is given by

σ : X 7→ ∆J ,

where ∆J is a unit J-simplex. The function σ gives, for every market t, the vector st of shares
for the J goods.

Following Berry and Haile (2014), we partition the exogenous characteristics as xt =(
x
(1)
t , x

(2)
t

)
, where x(1)t ≡

(
x
(1)
1t , . . . , x

(1)
Jt

)
, xjt ∈ R for j ∈ J \{0}, and define the linear indices

δjt = x
(1)
jt βj + ξjt, j ∈ J \{0},

and let δt ≡ (δ1t, . . . , δJt). Without loss of generality, we can normalize βj = 1 for all j (see
Berry and Haile (2014) for more details). Given the definition of the demand system, for every
market t,

σ(χt) = σ
(
δt, pt, x

(2)
t

)
.

Following Berry et al. (2013) and Berry and Haile (2014), we can show that there exists at
most one vector δt such that st = σ

(
δt, pt, x

(2)
t

)
, meaning that we can write

δjt = σ−1
j

(
st, pt, x

(2)
t

)
, j ∈ J \{0}. (13)

We can rewrite (13) in a more convenient form to get the following estimation equation

x
(1)
jt = σ−1

j

(
st, pt, x

(2)
t

)
− ξjt. (14)

Note that in (14) the inverse demand is indexed by j, meaning that we have to estimate J
inverse demand functions, that is exactly why the approach of Compiani (2018) gets severely
hit by the curse of dimensionality. To circumvent this problem, Gandhi and Houde (2019)
suggest transforming the input vector space under the linear utility specification to get rid of
the j subscript. GNT follow this idea and show that Equation (14) can be rewritten as

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt, (15)
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where γ is such that

σ−1
j

(
st, pt, x

(2)
t

)
= log

(
sjt
s0t

)
− γ(ωjt),

and ωjt ≡ ({skt,∆jkt}j 6=k), where ∆jkt = x̃jt − x̃kt and x̃t ≡
(
pt, x

(2)
t

)
.

Let yjt ≡ log(sjt/s0t)− x
(1)
jt , then we can rewrite equation (15) in a more convenient form

yjt = γ(ωjt) + ξjt. (16)

Equation (16) is the main structural equation where γ is a complex non-parametric function
characterizing the relationship between the inverse demand and product attributes and shares.
Dimensionality of the input vector ωjt depends on both the dimensionality of the characteristics
space and the number of products in the market, thus, ωjt is potentially high-dimensional.
This will always be the case if we want to augment standard datasets with unstructured data
such as product reviews, package images, etc. Since both the market shares st and prices pt
depend on the unobservable characteristics ξt, E[ξjt|ωjt] 6= 0, and hence, ωjt is endogenous.

In order to estimate γ, we need to construct a vector of instruments zjt. Berry et al. (1995)
argue that the vector of product characteristics xjt is exogenous with respect to the structural
error term ξjt, i.e. E[ξjt|xjt] = 0. This exogeneity condition can be used to construct demand
side instruments zjt. Instrument construction is a well-known problem in demand estimation,
since it can lead to weak identification and distorted inference. We refer the reader to Reynaert
and Verboven (2014) and Gandhi and Houde (2019) for a more detailed discussion.

To construct demand side instruments, we follow Gandhi and Houde (2019) and use
the transformed characteristics space zjt = ({∆x

jkt}j 6=k), where ∆x
jkt = xjt − xkt, such that

E[ξjt|zjt] = 0. Note that since ωjt includes zjt, it enforces strong correlation between endogenous
inputs and instruments. If data permit, one can augment the instrument space with supply
side instruments, such as cost shifters. Let cjt be a cost shifter for product j in market t, then
the instrument space becomes zjt =

({
∆x

jkt,∆
c
jkt

}
j 6=k

)
, where ∆c

jkt = cjt − ckt.

8.2 Conditional demand function

One of the main primitives in demand estimation is substitution patterns which allow the
researcher to investigate the responsiveness of consumer choices to changes in the market
structure and, thus, understand the nature of competition between firms. Traditional metrics
used to evaluate substitution patterns are price elasticities and diversion ratios. The price
elasticity of product j to a price change in product k measures how demand for product j
changes with the corresponding change in the price of product k. The diversion ratio for
products j and k is the fraction of consumers who leave product j after a price increase and
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switch to product k. Both of those measures are widely used in industrial organization and
anti-trust literature.

However, the nonparametric demand estimation framework, and especially the GNT frame-
work, provide us with a novel object that can be used to measure substitution patterns. Recall
equation (15),

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt︸ ︷︷ ︸
conditional demand

,

where the right-hand side of the expression above can be seen as a conditional demand function
for product j in market t. The conditional demand function characterizes the relationship
between the demand for product j (or the logarithm of the ratio of the share of product j to
the share of the outside good) and product characteristics given shares of other products in
the market.

In the GNT framework, the conditional demand function is the main building block for
measuring substitution patterns. Let us rewrite equation (15) as

Υjt ≡ log
(
sjt
s0t

)
− x

(1)
jt − γ(ωjt)− ξjt = 0.

Let Υt ≡ (Υ1t, . . . ,ΥJt), then by the implicit function theorem, the gradient of the share vector
in market t with respect to the vector of prices is given by

∇ptst = −[∇stΥt]
−1∇ptΥt.

Note that ∇ptst depends on the gradients of the conditional demand function with respect to
shares and prices.

For the rest of the paper we will focus on the conditional demand derivative with respect
to own price. Note that this derivative is simply equal to ∂γ(ωjt)/∂pjt. This object has a nice
economic interpretation and connections to traditional parametric demand estimation models
such as logit and nested logit, which we explore in greater detail in the following subsection.

Let Wjt ≡ (yjt, ωjt, zjt) be a data tuple. We use θjk to denote the conditional demand
derivative functional such that

θjk = E[m(Wjt, γ)] = E
[
∂

∂pkt
γ(ωjt)

]
= E[αjk(zjt)γ(ωjt)],

where αjk is the Riesz representer labeled by jk, meaning that for each product pair we have
to estimate its corresponding Riesz representer. We can construct the debiased estimator for
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θjk and its associated asymptotic variance using the formulae in (10),

θ̂jk =
1

T

L∑
`

∑
t∈T`

{m(Wjt, γ̂`) + α̂jk,`[yjt − γ̂`(ωjt)]}

V̂jk =
1

T

L∑
`

∑
t∈T`

ψ̂2
jk,`(Wjt), ψ̂jk,`(Wjt) = m(Wjt, γ̂`)− θ̂jk + α̂jk,`[yjt − γ̂`(ωjt)].

Note that in the expressions above we treat one market as one observation, hence, the cross-
fitting is applied across markets.

8.3 Simulated data experiments

8.3.1 Logit model

We focus on the derivative of the conditional demand function for good j with respect to its
own price, θjj = E[∂γ(ωjt)/∂pjt]. This derivative measures sensitivity of the logarithm of the
shares ratio to changes in price of product j conditional on the shares of competing products.
When we fix the shares of other products in the market, the only two quantities that can change
on the left-hand side of (15) in response to a price change are sjt and s0t. Thus, changes in sjt
can only occur at the expense of the corresponding change is s0t. For example, if θjj is negative,
it means that an increase in pjt leads to a decrease in sjt and a corresponding increase in s0t,
implying a positive substitution effect toward the outside good.

To get a better understanding of the interpretation, let us consider a simple logit model.
The logit estimation equation takes the form

log
(
sjt
s0t

)
= βppjt + x′jtβx + ξjt,

where xjt =
(
x
(1)
jt , x

(2)
jt

)
. Recall, the GNT estimation equation is

log
(
sjt
s0t

)
= x

(1)
jt + γ(ωjt) + ξjt.

Thus, if we take the mean derivative of γ with respect to own price, it will correspond to the
price coefficient in the logit model, θjj = βp, given the data are coming from the logit model. In
the logit case, the conditional and unconditional demand functions coincide, hence, the price
derivative does not depend on the shares of competing products. We use this observation for
our next simulation exercise.
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We simulate data from a simple logit model. The mean valuation in the logit model is given
by δjt = βppjt + x′jtβx + ξjt. Product shares can be calculated using the following formulae, for
j = 1, . . . , J and t = 1, . . . , T ,

sjt =
exp(δjt)

1 +
∑J

j=1 exp(δjt)
and s0t =

1

1 +
∑J

j=1 exp(δjt)
.

We set the total number of product characteristics besides the price to be equal to 4, i.e. x(1)jt is
a scalar and x(2)jt is a three-dimensional vector. We draw the observed product characteristics, xjt,
from the standard normal distribution, while the unobserved characteristics, ξjt, are distributed
as N (0, 0.25) for all j and t. The price is

pjt = 2

∣∣∣∣∣x(1)jt +
3∑

k=1

x
(2)
k,jt + cjt + ξjt + ejt

∣∣∣∣∣ ,
where cjt ∼ N (0, 1) is a cost-shifter and ejt ∼ N (0, 0.01) is some additional noise. The price
coefficient is βp = −2 and the coefficients on product characteristics are βx = (1, − 0.5, 0.5, 1)′.

We use KIV4 with the Gaussian RBF kernel to estimate γ. We construct dictionaries b(zjt)
and d(ωjt) using quadratic polynomials with interactions. Under the specified DGP, ωjt =

({skt,∆jkt}j 6=k) and zjt =
({

∆x
jkt,∆

c
jkt

}
j 6=k

)
, and hence, dim(ωjt) = dim(zjt) and p = q. We run

200 replications for J = 4, 6, 8 and T = 100, 200, 400. We use five-fold cross-fitting, L = 5.

Table 2. MC results: logit price coefficient.
PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg

J = 4 T = 100 0.691 0.133 0.225 0.485 0.727 0.503 0.00 0.95
T = 200 0.500 0.199 0.091 0.243 0.508 0.314 0.00 0.76
T = 400 0.466 0.239 0.079 0.159 0.473 0.287 0.00 0.56

J = 6 T = 100 0.376 0.088 0.058 0.341 0.380 0.352 0.00 0.96
T = 200 0.311 0.048 0.040 0.316 0.313 0.320 0.00 0.93
T = 400 0.293 0.079 0.032 0.149 0.295 0.169 0.00 0.92

J = 8 T = 100 0.262 0.045 0.042 0.092 0.265 0.102 0.00 0.97
T = 200 0.212 0.008 0.029 0.061 0.214 0.062 0.00 0.93
T = 400 0.181 0.002 0.024 0.041 0.183 0.041 0.00 0.92

Without loss of generality, we focus on the derivative of the conditional demand function
for product 1. Table 2 presents the results. We can clearly see the bias-variance trade-off: the
plug-in estimator has a much higher bias and smaller variance than the debiased estimator.
This results in an extremely poor coverage of the plug-in estimator, which is essentially zero in
all cases. Debiasing not only helps to diminish the bias, but also corrects the variance by adding

4Code: https://github.com/r4hu1-5in9h/KIV
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the variation in the influence function to ensure proper coverage. Despite higher variance, the
debiased estimator still has a lower RMSE. The coverage of the debiased estimator is close to
the nominal 95% level across almost all specifications. For J = 4 and T = 200, 400 the debiasing
is not that prominent which results into worse coverage compared to other specifications.

8.3.2 Nested logit model

Another model that has a closed form conditional demand function is nested logit. The
estimation equation is given by

log
(
sjt
s0t

)
= βppjt + x′jtβx + π log(sj|gt) + ξjt,

where sj|gt is the within nest share of product j in group g and π ∈ [0, 1] characterizes the
correlation of utilities that a consumer experiences among the products in the same nest. For
simplicity, we assume that there are two mutually exclusive nests, g = 1, 2, and the outside
good belongs to neither of the nests. Unlike logit, the conditional demand function under the
nested logit model is different from the unconditional demand function. It implicitly depends
on shares of within group products as sj|gt = 1−

∑
k 6=j, k∈Jg

sk|gt, where Jg denotes products
that belong to group g.

Under the nested logit specification, the derivative of the conditional demand function
with respect to price takes the following form

θjj = E
[
βp +

π

sj|gt

∂sj|gt
∂pjt

]
. (17)

To proceed, let us first focus on the derivative of the within group share with respect to the
mean valuation, i.e. ∂sj|gt/∂δjt, which is given by

∂sj|gt
∂δjt

=
1

1− π
sj|gt(1− sj|gt).

Applying the chain rule,

∂sj|gt
∂pjt

=
∂sj|gt
∂δjt

∂δjt
∂pjt

=
βp

1− π
sj|gt(1− sj|gt). (18)

Thus, combining (17) and (18) gives

θjj = E
[
βp

(
1 +

π

1− π
(1− sj|gt)

)]
= βp︸︷︷︸

direct effect

+ βp
π

1− π
E[1− sj|gt]︸ ︷︷ ︸

indirect effect

. (19)
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Note that in equation (19) the effect of a price change comes from two components. The
direct effect measures how changes in pjt affect the log ratio of the shares, which is similar to
the logit price coefficient. The indirect effect measures the effect price changes have through
the nesting structure. Note that the closer the nesting parameter is to 1, the larger the derivative
becomes. When π is close 1, consumers tend to substitute more towards products within the
nest. As a result, conditional on the shares of other within group products, consumers prefer
to substitute more towards the outside good rather than towards the off-nest products, hence,
the derivative is larger in absolute value. On the other hand, the larger the within group share
of product j is, the smaller is the derivative. If product j has a large share within group g, it
means that consumers strongly prefer product j to other products in the nest, and hence, less
sensitive they are to its price changes.

Since nested logit enforces stronger substitution effects between products from the same
nest, the shares formulae are more complicated than in the logit case. If product j belongs
to group g, then the choice probability of product j in market t conditional on group g being
chosen equals

sj|gt =
exp

(
δjt
1−π

)
Dgt

, where Dgt =
∑
j∈Jg

exp
(

δjt
1− π

)
.

The probability that group g is chosen equals

sgt =
D1−π

gt∑
gD

1−π
gt

.

Thus, the unconditional probability of product j, from nest g, in market t being chosen is given
by

sjt = sjgtsgt =
exp

(
δjt
1−π

)
Dπ

gt

[∑
gD

1−π
gt

] .
To see whether ML is capable of capturing this departure from logit, we run another

Monte Carlo exercise. Similarly to the logit design, we set the number of observed product
characteristics to 4. However, now there is one categorical characteristic which defines nests
and does not change across markets, x(2)3,jt. It assigns the first half of the products in the market
to the first group and the second half to the second group. For example, if J = 4, then products
1 and 2 belong to the first nest, while products 3 and 4 belong to the second nest. The remaining
product characteristics are drawn from the standard normal distribution. All the remaining
quantities are constructed in the same fashion as in the logit design. We set π = 0.5. The
estimation procedure is unchanged.
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Table 3. MC results: nested logit own price derivative.
PI Bias DB Bias PI SD DB SD PI RMSE DB RMSE PI Cvg DB Cvg

J = 4 T = 100 0.837 0.097 0.458 0.491 0.954 0.501 0.01 0.90
T = 200 0.609 0.001 0.240 0.310 0.655 0.310 0.00 0.88
T = 400 0.496 0.018 0.168 0.220 0.524 0.221 0.01 0.90

J = 6 T = 100 0.455 0.033 0.201 0.245 0.498 0.247 0.01 0.82
T = 200 0.297 0.058 0.124 0.162 0.321 0.172 0.02 0.75
T = 400 0.231 0.032 0.112 0.132 0.257 0.136 0.06 0.71

J = 8 T = 100 0.309 0.040 0.134 0.183 0.337 0.188 0.04 0.81
T = 200 0.200 0.007 0.084 0.118 0.217 0.118 0.06 0.81
T = 400 0.123 0.034 0.086 0.092 0.150 0.091 0.13 0.78

The results are presented in Table 3. The overall pattern is similar to the logit case. However,
the bias-variance trade-off is not that prominent in the nested logit case. The variance of the
debiased estimator is still higher than of the plug-in estimator, however, the gap becomes much
smaller. Moreover, unlike the logit case, for J = 4 debiasing works equally well across all
sample sizes. Finally, despite the debiased estimator achieves much better coverage than the
plug-in estimator, it still undercovers in all specifications.

8.4 Real data example

We use retail scanner data from the IRI Academic Database (Bronnenberg et al., 2008). This
dataset includes unit sales by UPC code, store and week for a sample of supermarkets over
2001-2012 as well as information on product characteristics. We focus on one year span of
2003 and top ten most sold products. Among others, the list of products includes Coke, Pepsi,
Sprite, Dr. Pepper, etc. Since we want to exploit the variation in product attributes, we do not
aggregate the data to the brand level. In other words, products are defined by a combination
between a brand and a set of product characteristics.

Carbonated beverages are sold in different packages and package sizes. We restrict our
attention to cans and define a product unit as a 12 oz can. Hence, we construct market shares
based on the total amount of cans sold. Prices are defined as the ratio of total revenue to total
number of units sold. We aggregate the data to geographic region-month level resulting in
5,640 observations at the product-region-month level.

Data on product characteristics include beverage flavor, sugar, caffeine and calorie levels.
All characteristics are represented by categorical variables, thus, for computational reasons
we aggregate product attributes in larger groups (see Appendix E for more details). After
aggregation and dropping collinear characteristics, we are left with six product attributes we
use for estimation. We have CAFFEINE and SUGAR dummy variables indicating whether
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a product contains caffeine and sugar, respectively. The remaining four variables represent
different flavor categories: COLA, LEMONADE, PEPPER, and OTHERS.

We start our analysis with parametric specifications. To be precise, we estimate logit, nested
logit, and BLP models. Since beverage flavors are represented by four dummy variables, we
drop the intercept to avoid collinearity issues. For the nested logit specification, we split
the products into two categories based on the amount of sugar. When estimating the BLP
model, we put random coefficients on price, CAFFEINE, and SUGAR, while keeping the flavor
variables only in the linear part. We also consider two sets of instruments: (i) standard BLP
instruments and (ii) local differentiation instruments of Gandhi and Houde (2019). All models
are estimated with the PyBLP package (Conlon and Gortmaker, 2020) available in Python.

Table 4 displays the results. We can observe that the linear coefficients estimates are
pretty close across the estimators. Positive coefficients on CAFFEINE and SUGAR imply that
consumers tend to prefer beverages containing caffeine and sugar over decaffeinated and diet
alternatives. As we have dropped the intercept term, we can only interpret differences in
flavor dummies. As COLA has the largest coefficient among all other flavors, we conclude that
consumers prefer cola-flavored drinks over other alternatives.

The price coefficient in the nested logit is slightly smaller compared to the logit estimate
since a part of the price effect comes through the within group share, which is captured in (19).
The nesting coefficient estimate equals to 0.195 indicating a relatively weak nesting structure.
BLP specifications mostly differ in the estimates of nonlinear parameters. Using the vanilla
BLP instruments uncovers more heterogeneity in consumer preferences across sugar levels,
while using the differentiation IVs picks up more heterogeneity across caffeine levels.

Overall, the price coefficient estimates give us a sense of the order of magnitude of the
conditional demand function derivative. As in the simulated data experiments, we use KIV to
estimate the conditional demand function γ. Besides prices and shares, there are 5 product
characteristics in x(2)jt leading to dim(ωjt) = 70, which makes the problem moderately high-
dimensional. To construct b(zjt) and b(ωjt) dictionaries, we use empirical moment based basis
functions as in GNT (see Appendix F for more details) with p = 405 and q = 594. The debiased
estimator is constructed using five-fold cross-fitting, L = 5. We compare the performance of
the debiased estimator to the plug-in KIV and nested logit estimators.

Table 5 presents conditional demand function derivative estimates for each product. The
first two columns contain nested logit estimates and their corresponding standard errors.
Nested logit estimates are constructed by simply plugging-in the estimated parameters into

(19) and replacing the expectation with the sample average. There is no much variation in the
estimates across products with estimated values being close the logit price coefficient estimate.
Unlike the nested logit estimates, the KIV plug-in estimates do exhibit substantial variation
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Table 4. Parametric demand estimates
Logit Nested Logit BLP BLP DIV*

Linear parameters

price -5.353 -4.564 -5.369 -5.364
(0.060) (0.004) (0.071) (0.064)

CAFFEINE 0.522 0.409 0.522 0.414
(0.051) (0.046) (0.056) (0.052)

SUGAR 0.735 0.710 0.095 0.710
(0.066) (0.061) (0.065) (0.073)

COLA -1.491 -1.363 -1.496 -1.495
(0.032) (0.031) (0.035) (0.033)

LEMONADE -2.441 -2.133 -2.447 -2.450
(0.059) (0.045) (0.073) (0.064)

PEPPER -2.630 -2.258 -2.643 -2.638
(0.078) (0.057) (0.092) (0.082)

OTHERS -3.840 -3.182 -3.856 -3.849
(0.052) (0.036) (0.060) (0.054)

Nonlinear parameters

π̂ – 0.195 – –
(0.013)

price – – 0.461 0.332
(0.012) (0.008)

CAFFEINE – – 0.145 1.168
(0.005) (0.010)

SUGAR – – 2.191 0.413
(0.030) (0.006)

* Estimated using local differentiation instruments.

across products. Moreover, we can observe that products with similar characteristics exhibit
similar responsiveness to price changes. For example, diet Coke and diet Pepsi have similar
derivative estimates, while regular Coke is more sensitive.

We can see a clear debiasing effect in the last two columns of Table 5. First, the plug-in KIV
estimates are biased upwards. It is important to note that despite being numerically different
the debiased estimates are qualitatively close to the plug-in estimates and preserve the data
patterns uncovered by the KIV estimator. This indicates that debiasing indeed corrects for
the regularization bias without distorting the estimates. Second, the standard errors after
debiasing are larger than those of the plug-in estimator. These findings are coherent with the
Monte Carlo evidence from Section 8.3.
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Table 5. Conditional demand derivative estimates.

Product NL NL SE PI PI SE DB DB SE

Caffeine-free Diet Coke -5.502 0.085 -3.453 0.061 -4.375 0.314
Caffeine-free Diet Pepsi -5.575 0.081 -3.364 0.063 -4.420 0.332
Coke -5.262 0.188 -5.094 0.032 -6.049 0.249
Diet Coke -5.169 0.218 -4.034 0.021 -4.667 0.171
Diet Pepsi -5.327 0.210 -4.041 0.025 -4.800 0.204
Dr. Pepper -5.572 0.122 -3.106 0.082 -5.635 0.693
Mountain Dew Classic -5.561 0.086 -4.585 0.066 -6.863 0.617
Mountain Dew Other -5.637 0.058 -2.954 0.103 -5.784 0.781
Pepsi -5.340 0.193 -5.046 0.045 -6.172 0.302
Sprite -5.539 0.060 -4.015 0.020 -6.025 0.552

9 Conclusion

In this paper, we have given an automatic method of debiasing functionals of machine learners
under endogeneity. We have shown how to use a PGMM minimum distance estimator to
perform debiasing using only the form the object of interest, without knowing the form of
the bias correction term. We allow for a wide range of MLIV estimators that satisfy certain
convergence rate conditions. We have shown root-n consistency and asymptotic normality and
given a consistent asymptotic variance estimator for both linear and nonlinear functionals. For
linear functionals we require MLIV estimators to converge fast enough in the projected mean
square norm, while for nonlinear functionals we require fast enough convergence in the stan-
dard mean square norm, which is a more stringent requirement due to ill-posedness. Relaxing
the convergence rate condition for nonlinear functionals as well extending the approach to
irregular functionals are promising directions for future research.

Finally, we have applied our debiasing procedure to estimate the conditional demand
derivative in the nonparametric demand for differentiated products framework. We have
obtained evidence from both simulated and real scanner data that plug-in estimates are biased
upwards and have smaller variance compared to the debiased estimates, which reflects the
bias-variance trade-off occurring due to regularization. Looking at the conditional demand
derivative is a first step towards understanding the benefits of using machine learning to
estimate substitution patterns over the standard parametric methods. Thus, taking one step
further to estimation of classical measures of substitution like elasticities and diversion ratios
and to counterfactual analysis seems like a natural addition to the future research agenda.
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A Performance of standard ML algorithms under endogeneity

In this example, we illustrate that standard ML algorithms such as Neural Networks fail to
capture the structural function under endogeneity.

Figure 2. Standard ML vs MLIV estimators

Consider the following design similar to Lewis and Syrgkanis (2018), Bennett et al. (2019),
and Bakhitov and Singh (2021). Let

Yi = γ(Xi) + ei + δi, Xi = 0.5Zi + 0.5ei,

Zi ∼ N (0, 1), ei ∼ N (0, 1), δi ∼ N (0, 0.1),

where ei is a confounder. We consider four different choices of γ,

abs: γ(X) = |X|, log: γ(X) = log(|16X − 8|+ 1)sign(X − 0.5)

sin: γ(X) = sin(X), max: γ(X) = max(X, 0.2X).
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We compare the performance of the standard 2-layer Neural Networks with (16, 8) nodes to
the performance of the Kernel IV regression of Singh et al. (2019). We use 2000 observations
for training and 1000 observations for testing.

Figure 2 shows that the Neural Network fails to capture the structural function. We can
see that in all cases it obviously is fitting the conditional expectation E[Y |X] instead of γ. In
contrast, KIV is able to pick up the structural function in all cases, despite having problems at
the boundaries which is a common problem of all kernel methods.

B Analytical solution to the GMM problem

In this Section, we provide additional intuition behind the PGMM estimator of the RR. To
do so, we focus on the standard GMM problem without adding the penalty term, i.e. ρ̂ is a
solution to

min
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ). (B.1)

Given the form of the debiased moment function (5) and the linear approximation for the
RR, the orthogonal moment condition (7) will always be linear in ρ, meaning that the GMM
criterion in (B.1) is globally concave and has a unique global minimizer.

For the ease of exposition, we drop the cross-fitting notation and assume that we are
interested in a linear functional θ = E[m(W, γ)]. Then the moment condition takes the form

ψ̂γ(dj, ρ) =
1

n

n∑
i=1

{m(Wi, dj)− dj(Xi)b(Zi)
′ρ} , j = 1, . . . , q.

Let m(W, d) = (m(W, d1), . . . ,m(W, dq)). Taking the first-order condition of the GMM criterion
gives

∂ψ̂γ(ρ̂)

∂ρ′
Ω̂q

{
1

n

n∑
i=1

m(Wi, d)−
1

n

n∑
i=1

d(Xi)b(Zi)
′ρ̂

}
= 0. (B.2)

We can rewrite (B.2) in matrix form as

−Ĝ′Ω̂qM̂ + Ĝ′Ω̂qĜρ̂ = 0,

which immediately gives a closed-form solution for ρ̂,

ρ̂ = (Ĝ′Ω̂qĜ)
−1Ĝ′Ω̂qM̂. (B.3)

Note that the form of the GMM solution in (B.3) resembles the GMM solution to the classical
linear IV problem, but with endogenous regressors and instruments being switched. Ichimura
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and Newey (2017) point out thatα(Z) is the solution of a “reverse” structural equation involving
an expectation conditional on the endogenous variablesX rather than the instruments Z. If we
set Ω̂ =

(
1
n

∑n
i=1 d(Xi)d(Xi)

′)−1, we will get the exact solution to the “reverse” NPIV problem.

C Computing Auto-DML using Penalized GMM

Recall, in matrix form the PGMM problem is given by

min
ρ∈Rp

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn|ρ|1. (C.1)

Note that the objective in (C.1) is a generalized version of the Lasso objective. Thus, we can
generalize the coordinate decent approach for Lasso to the PGMM objective that we use in this
paper. We follow CNS and use a coordinate-wise descent algorithm with the soft-thresholding
update.

We denote the jth element of a generic vector v by vj and let ej be a p× 1 unit vector with 1

in the jth coordinate and zeros elsewhere.

Algorithm 1 Coordinate-wise descent algorithm for PGMM
1: for j = 1 : p do
2: Calculate loadings that do not depend on ρj :

Bj = e′jĜ
′Ω̂qĜej

Aj = e′jĜ
′Ω̂q(M̂ − Ĝρ+ Ĝejρj)

3: Update coordinate ρj :

ρj =


Aj+λn

Bj
if Aj < −λn

0 if Aj ∈ [−λn, λn]
Aj−λn

Bj
if Aj > λn

4: end for

The justification for Algorithm 1 is similar to the one of CNS. It follows from the fact that
the GMM objective (C.1) is of the form of eq. 21 of Friedman et al. (2007), hence, the coordinate
descent converges to the minimizer of the objective (Tseng, 2001).

One can boost the performance of the PGMM algorithm by incorporating adaptive penalty
loadings in the spirit of Zou (2006). This will transform the optimization problem (C.1) into
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the adaptive PGMM (A-PGMM) problem

min
ρ

(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λn

p∑
j=1

ŵj|ρj|, (C.2)

where ŵ = (ŵ1, . . . , ŵp) is a vector of data-dependent weights with ŵj = 1/|ρ̃j|, and ρ̃ is a
preliminary consistent estimator. The only difference to Algorithm 1 is that in step 3 we replace
λn with ŵjλn.

C.1 Numerical performance

We evaluate the numerical performance of the PGMM algorithm in two scenarios: (i) exogenous
high-dimensional linear regression, (ii) high-dimensional linear IV regression.

C.1.1 HD linear regression

We borrow the set-up from CNS and compare the performance of PGMM and A-PGMM algo-
rithms with the MD Lasso estimator of CNS as well as with the built-in Python implementations
of the stochastic gradient descent (SGD) and least-angle regression (LARS) algorithms5.

In this design, the data generating process is

Y = X ′β0 + ε,

where X = (1, X1, . . . , X100)
′, Xj ∼ N (0, 1) and i.i.d., and ε ∼ N (0, 1). The true value of the

regression coefficient is β0 = (1, 1, 1, 0, 0, . . . ) and dim(β0) = 101. The number of observations
is n = 100. We can recover β0 by using the functional m(w, h) = yh(x) in the PGMM and MD
Lasso formulations6.

In Table 6, we report MSE defined as |β̂ − β0|22 of various implementations based on 200

simulations. We can see that PGMM performs on par with SGD, LARS, and MD Lasso, while
adding adaptive weights on the penalty term improves the performance twice rendering the
lowest MSE across the algorithms, which validates the procedure.

5We use LassoCV and LassoLarsCV commands to run SGD and LARS algorithms respectively.
6Alternatively, we could simply use the standard GMM moment g(w, h) = (y−h(x))x for the linear regression

to implement PGMM.
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Table 6. HD Linear regression results.

MSE

SGD 0.1553
LARS 0.1786
MD Lasso 0.1474
PGMM 0.1791
A-PGMM 0.0868

C.1.2 HD linear IV regression

We follow the exponential design of Belloni et al. (2012). The DGP is

Y = X ′β0 + ε

X = ΠZ + v,

where β0 = (1, 1, 1, 0, 0, . . . ) and dim(β0) = 101, X = (1, X1, . . . , X100)
′, Z = (Z1, . . . , Z150) ∼

N (0,ΣZ) is a 150 × 1 vector with E[Z2
j ] = 1 and Corr(Zh, Zj) = 0.5|h−j|. We set the first

stage coefficients Π = (1, 0.7, 0.72, . . . , 0.7149). The structure of the error terms is the following:
ε ∼ N (0, 1) and v|ε ∼ N (rε, I − r2) so that the unconditional covariance matrix of the
endogenous variables is the identity. We set r = 0.5 and the number of observations n = 100.

We compare the performance of PGMM and A-PGMM algorithms to the Double Lasso
estimator of Gold et al. (2020). Table 7 demonstrates MSEs of the considered implementations
based on 200 simulations.

Table 7. HD Linear IV regression results.

MSE

Double Lasso 0.1864
PGMM 0.3020
A-PGMM 0.0726

D Proofs of results

In this Section, we present the proofs of the theoretical results of the paper along with auxiliary
lemmas and their corresponding proofs.
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D.1 Properties of the PGMM estimator

Lemma D.1. If Assumption 2 is satisfied, then

||Ĝ−G||∞ = Op(ε
G
n ), εGn =

√
log(q)
n

.

Proof. The proof is similar to the proof of Lemma C1 of Chernozhukov et al. (2020b). Define

Tijk = dj(Xi)bk(Zi)− E[dj(Xi)bk(Zi)], Ujk =
1

n

n∑
i=1

Tijk.

For any constant C,

P(||Ĝ−G||∞ ≥ CεGn ) ≤
q∑

j=1

p∑
k=1

P(|Uijk| ≥ CεGn ) ≤ pqmax
j,k

P(|Uijk| ≥ CεGn ) ≤ q2 max
j,k

P(|Uijk| ≥ CεGn ),

where the last inequality follows from q ≥ p. Note that E[Tijk] = 0 and by Assumption 2,

|Tijk| ≤ |dj(Xi)| · |bk(Zi)|+ E[|dj(Xi)| · |bk(Zi)|] ≤ 2CbCd.

Since Tijk is a bounded random variable, it is sub-Gaussian. Let ||Tijk||Ψ2 denote the sub-
Gaussian norm. Define K = 2CbCd/ log 2 ≥ ||Tijk||Ψ2 . By Hoeffding’s inequality (see Theorem
2.6.2 in Vershynin (2018)), there is a constant c such that

q2 max
j,k

P(|Uijk| ≥ CεGn ) ≤ 2q2 exp
(
−c(nCε

G
n )

2

nK2

)
= 2q2 exp

(
−cC

2 log(q)
K2

)
≤ 2 exp

(
log(q)

[
2− cC2

K2

])
→ 0

for any C > K
√

2/c. Thus, for large enough C, P(|Ĝ−G|∞ ≥ CεGn ) → 0, which completes the
proof. �

Lemma D.2. For any q × 1 vector M̂ , q × p matrix Ĝ, q × q matrix Ω̂, and λ > 0, if

ρ∗ = argmin
ρ∈Rp

{
(M̂ − Ĝρ)′Ω̂q(M̂ − Ĝρ) + 2λ|ρ|1

}
,

then
||Ĝ′Ω̂q(M̂ − Ĝρ∗)||∞ ≤ λ.
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Proof. The proof is similar to the proof of Lemma C0 of Chernozhukov et al. (2020b). Since the
objective function is convex in ρ, a necessary condition for minimization is that zero belongs to
the sub-differential of the objective function, i.e.

0 ∈ −Ĝ′Ω̂q(M̂ − Ĝρ∗) + λ([−1, 1], . . . , [−1, 1])′.

Thus, for j = 1, . . . , p we have

−e′jĜ′Ω̂q(M̂ − Ĝρ∗) + λ ≥ 0, −e′jĜ′Ω̂q(M̂ − Ĝρ∗)− λ ≤ 0,

where ej is the jth unit vector. Combining two inequalities above yields

||e′jĜ′Ω̂q(M̂ − Ĝρ∗)||∞ ≤ λ,

which completes the proof as the inequality holds for every j. �

Following Bradic et al. (2021), by Assumption 4 we can define Sρ̄ ⊂ S as indices of a sparse
approximation with |Sρ̄| = s̄, where |A| denotes the cardinality of set A, and coefficients
ρ̄ = (ρ̄1, . . . , ρ̄p)

′, with ρ̄j = 0 for j 6∈ Sρ̄ such that

||ρL − ρ̄||2 ≤ Cs̄ε2n.

Also define ρ? as
ρ? = argmin

v∈Rp

(ρL − v)′G′ΩqG(ρL − v) + 2εn
∑
j∈Sc

ρ̄

|vj|. (D.1)

Moreover, we assume that |ρ?|1 = O(1).

Lemma D.3. ||G′ΩqG(ρ? − ρL)||∞ ≤ εn.

Proof. Follows directly from the proof of Lemma D.2. �

Lemma D.4. (ρL − ρ?)
′G′ΩqG(ρL − ρ?) ≤ Cs̄ε2n.

Proof. By the definition of ρ? and the fact that the largest eigenvalue of G′ΩqG is bounded, we
have

(ρL − ρ?)
′G′ΩqG(ρL − ρ?) + 2εn

∑
j∈Sc

ρ̄

|ρ?,j| ≤ (ρL − ρ̄)′G′ΩqG(ρL − ρ̄) + 2εn
∑
j∈Sc

ρ̄

|ρ̄j|

= (ρL − ρ̄)′G′ΩqG(ρL − ρ̄) ≤ C||ρL − ρ̄||2 ≤ Cs̄ε2n.

�
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Lemma D.5. Let Sρ? be the vector of indices of nonzero elements of ρ?. Then, s? ≡ |Sρ? | ≤ Cs̄.

Proof. For all j ∈ Sρ?\Sρ̄ the first order conditions to equation (D.1) imply |e′jG′ΩqG(ρ? − ρL)| =
εn. Therefore, it follows that

∑
j∈Sρ?\Sρ̄

(
e′jG

′ΩqG(ρ? − ρL)
)2

= ε2n|Sρ?\Sρ̄|.

Moreover, using Lemma D.5 and the fact that the largest eigenvalue of G′ΩqG is bounded, we
get

∑
j∈Sρ?\Sρ̄

(
e′jG

′ΩqG(ρ? − ρL)
)2 ≤ p∑

j=1

(
e′jG

′ΩqG(ρ? − ρL)
)2

= (ρ? − ρL)
′G′ΩqG

(
p∑

j=1

eje
′
j

)
G′ΩqG(ρ? − ρL)

= (ρ? − ρL)(G
′ΩqG)

2(ρ? − ρL)

≤ λmax(G
′ΩqG){(ρ? − ρL)G

′ΩqG(ρ? − ρL)} ≤ Cs̄ε2n.

Combining the results above, we obtain

ε2n|Sρ?\Sρ̄| ≤ Cs̄ε2n.

Dividing both sides by ε2n gives |Sρ?\Sρ̄| ≤ Cs̄. As a result,

s? = |Sρ̄|+ |Sρ?\Sρ̄| ≤ s̄+ Cs̄ ≤ Cs̄.

�

Lemma D.6. Let B = E[b(Z)b(Z)′] has its largest eigenvalue bounded uniformly in n, then
||α0 − b′ρ?||2 ≤ Cs̄ε2n.

Proof. By the triangle inequality and Assumption 4,

||α0 − b′ρ?||2 ≤ ||α0 − b′ρ̄||2 + ||b′(ρ̄− ρL)||2 + ||b′(ρL − ρ?)||2

≤ Cs̄ε2n + ||b′(ρ̄− ρL)||2 + ||b′(ρL − ρ?)||2.

Moreover, by the definition of ρ̄ and λmax(B) ≤ C,

||b′(ρ̄− ρL)||2 ≤ λmax(B)||ρ̄− ρL||2 ≤ Cs̄ε2n.
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Also, by Lemma D.4,

||b′(ρL − ρ?)||2 ≤ λmax(B)||ρL − ρ?||2 ≤ Cs̄ε2n,

which completes the proof. �

Lemma D.7. If Assumptions 1–3 and 6 are satisfied, then

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ = Op(εn).

Proof. By the triangle inequality,

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ ≤ ||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ (D.2)

+ ||G′ΩqM −G′ΩqGρ?||∞ (D.3)

+ ||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞. (D.4)

Consider the first element (D.2). Note that by the triangle inequality,

||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ ≤ ||(Ĝ−G)′(Ω̂q − Ωq)(M̂ −M)||∞ (D.5)

+ ||(Ĝ−G)′Ωq(M̂ −M)||∞ (D.6)

+ ||G′(Ω̂q − Ωq)(M̂ −M)||∞ (D.7)

+ ||G′Ωq(M̂ −M)||∞ (D.8)

+ ||(Ĝ−G)′ΩqM ||∞ (D.9)

+ ||(Ĝ−G)′(Ω̂q − Ωq)M ||∞ (D.10)

+ ||G′(Ω̂q − Ωq)M ||∞. (D.11)

Now we will bound every term on the RHS of the inequality above. To do so, we will use the
following matrix norm inequality from Caner and Kock (2018). For any q × p matrix A, p× q

matrix B, and q × q matrix F the following inequality holds

||BFA||∞ ≤ q||B||∞||F ||`∞||A||∞. (D.12)

We can use (D.12) to put an upper bound on (D.5),

||(Ĝ−G)′(Ω̂q−Ωq)(M̂−M)||∞ ≤ ||Ĝ−G||∞||Ω̂−Ω||`∞||M̂−M ||∞ = Op(ε
G
n )op(1)Op(ε

M
n ) = op(ε

2
n).
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Moreover, notice that Assumptions 2 and 6 imply that ||G||∞ = O(1) and ||M ||∞ = O(1). Using
this fact and (D.12), we can bound the remaining terms (D.6)–(D.11),

||(Ĝ−G)′Ωq(M̂ −M)||∞ ≤ ||Ĝ−G||∞||Ω||`∞||M̂ −M ||∞ = Op(ε
G
n )O(1)Op(ε

M
n ) = Op(ε

2
n)

||G′(Ω̂q − Ωq)(M̂ −M)||∞ ≤ ||G||∞||Ω̂− Ω||`∞||M̂ −M ||∞ = O(1)op(1)Op(ε
M
n ) = op(ε

M
n )

||G′Ωq(M̂ −M)||∞ ≤ ||G||∞||Ω||`∞||M̂ −M ||∞ = O(1)Op(ε
M
n ) = Op(ε

M
n )

||(Ĝ−G)′ΩqM ||∞ ≤ ||Ĝ−G||∞||Ω||`∞||M ||∞ = Op(ε
G
n )O(1) = Op(ε

G
n )

||(Ĝ−G)′(Ω̂q − Ωq)M ||∞ ≤ ||Ĝ−G||∞||Ω̂− Ω||`∞ ||M ||∞ = Op(ε
G
n )op(1)O(1) = op(ε

G
n )

||G′(Ω̂q − Ωq)M ||∞ ≤ ||G||∞||Ω̂− Ω||`∞||M ||∞ = O(1)op(1) = op(1).

Collecting all the terms gives the upper bound for (D.2)

||Ĝ′Ω̂qM̂ −G′ΩqM ||∞ = Op(εn).

Next, by the triangle and Hölder’s inequalities,

||G′ΩqM −G′ΩqGρ?||∞ ≤ ||G′ΩqM −G′ΩqGρL||∞ + ||G′ΩqG(ρL − ρ?)||∞.

By Lemma D.2 and the fact that ρL are the population PGMM coefficients,

||G′ΩqM −G′ΩqGρL||∞ ≤ εn.

Moreover, by Lemma D.3,
||G′ΩqG(ρL − ρ?)||∞ ≤ εn.

Thus, using the results above,

||G′ΩqM −G′ΩqGρ?||∞ = O(εn).

We are left with putting an upper bound on (D.4). By Hölder’s inequality,

||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞ ≤ ||G′ΩqG− Ĝ′Ω̂qĜ||∞|ρ?|1.
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Moreover, by the triangle inequality,

||G′ΩqG− Ĝ′Ω̂qĜ||∞ ≤ ||(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)||∞

+ 2||(Ĝ−G)′(Ω̂q − Ωq)G||∞

+ ||(Ĝ−G)′Ωq(Ĝ−G)||∞

+ 2||(Ĝ−G)′ΩqG||∞

+ ||G′(Ω̂q − Ωq)G||∞.

Using (D.12), we can bound all the terms on the RHS of the inequality above,

||(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)||∞ ≤ ||Ĝ−G||∞||Ω̂− Ω||`∞||Ĝ−G||∞ = Op((ε
G
n )

2)op(1) = op((ε
G
n )

2)

2||(Ĝ−G)′(Ω̂q − Ωq)G||∞ ≤ 2||Ĝ−G||∞||Ω̂− Ω||`∞||G||∞ = Op(ε
G
n )op(1)O(1) = op(ε

G
n )

||(Ĝ−G)′Ωq(Ĝ−G)||∞ ≤ ||Ĝ−G||∞||Ω||`∞||Ĝ−G||∞ = Op((ε
G
n )

2)O(1) = Op((ε
G
n )

2)

2||(Ĝ−G)′ΩqG||∞ ≤ 2||Ĝ−G||∞||Ω||`∞||G||∞ = Op(ε
G
n )O(1) = Op(ε

G
n )

||G′(Ω̂q − Ωq)G||∞ ≤ ||G||∞||Ω̂− Ω||`∞ ||G||∞ = op(1)O(1) = op(1).

Collecting all the terms gives,

||(G′ΩqG− Ĝ′Ω̂qĜ)||∞ = Op(ε
G
n ).

Combining the result above with |ρ?|1 = O(1) yields

||(G′ΩqG− Ĝ′Ω̂qĜ)ρ?||∞ = Op(ε
G
n )O(1) = Op(ε

G
n ).

Collecting all the terms for (D.2)–(D.4) gives us the desired upper bound,

||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞ = Op(εn) +O(εn) +Op(ε
G
n ) = Op(εn).

�

Let φ2(s?) denote the population restricted eigenvalue from Assumption 5 at s = s?,

φ2(s?) = inf
{
δ′G′ΩqGδ

||δSρ?
||2

: δ ∈ Rp\{0}, |δSc
ρ?
|1 ≤ 3|δSρ?

|1, |Sρ?| ≤ s?

}
.
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Next, let us introduce an empirical version of the condition above,

φ̂2(s?) = inf
{
δ′Ĝ′Ω̂qĜδ

||δSρ?
||2

: δ ∈ Rp\{0}, |δSc
ρ?
|1 ≤ 3|δSρ?

|1, |Sρ?| ≤ s?

}
.

In the following Lemma we show that we can bound φ̂2(s?) from below, which will be useful
in the proof of Theorem 1.

Lemma D.8. If Assumptions 2 and 1 are satisfied, then

φ̂2(s?) ≥ φ2(s?)−Op(s?ε
G
n ).

Proof. The proof follows the proof of Lemma S3 in Caner and Kock (2018). By adding and
subtracting G and Ωq and the reverse triangle inequality,

|δ′Ĝ′Ω̂qĜδ| = |δ′(Ĝ−G+G)′(Ω̂q − Ωq + Ωq)(Ĝ−G+G)δ|

≥ |δ′G′ΩqGδ|

− |δ′(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)δ|

− |δ′(Ĝ−G)′Ωq(Ĝ−G)δ|

− |δ′G′(Ω̂q − Ωq)Gδ|

− 2|δ′(Ĝ−G)′(Ω̂q − Ωq)Gδ|

− 2|δ′(Ĝ−G)′ΩqGδ|.

The following inequality from Caner and Kock (2018) will help us bound the expression above.
For any q×pmatrixA, p×q matrixB, q×q matrix F , and p×1 vector x the following inequality
holds

|x′BFAx| ≤ q|x|21||B||∞||F ||`∞ ||A||∞. (D.13)

Using (D.13), we get

|δ′(Ĝ−G)′(Ω̂q − Ωq)(Ĝ−G)δ| ≤ |δ|21||Ĝ−G||2∞||Ω̂− Ω||`∞
|δ′(Ĝ−G)′Ωq(Ĝ−G)δ| ≤ |δ|21||Ĝ−G||2∞||Ω||`∞

|δ′G′(Ω̂q − Ωq)Gδ| ≤ |δ|21||G||2∞||Ω̂− Ω||`∞
2|δ′(Ĝ−G)′(Ω̂q − Ωq)Gδ| ≤ 2|δ|21||Ĝ−G||∞||Ω̂− Ω||`∞||G||∞

2|δ′(Ĝ−G)′ΩqGδ| ≤ 2|δ|21||Ĝ−G||2∞||Ω||`∞||G||∞.
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Combining the terms gives

|δ′Ĝ′Ω̂qĜδ| ≥ |δ′G′ΩqGδ| (D.14)

− |δ|21||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

− |δ|21||G||2∞||Ω̂− Ω||`∞
− 2|δ|21||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞)

Recall, we have the restriction

|δSc
ρ?
|1 ≤ 3|δSρ?

|1 ≤ 3
√
s?||δSρ?

||

where the second inequality is Cauchy-Schwarz. Adding |δSρ?
| to both sides gives

|δ|1 ≤ 4
√
s?||δSρ?

|| ⇒ |δ|21
||δSρ?

||2
≤ 16s?. (D.15)

Divide (D.14) by ||δSρ?
||2 and use (D.15),

|δ′Ĝ′Ω̂qĜδ|
||δSρ?

||2
≥ |δ′G′ΩqGδ|

||δSρ?
||2

− 16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

− 16s?||G||2∞||Ω̂− Ω||`∞
− 32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞).

Since |δ′G′ΩqGδ|
||δSρ?

||2 ≥ φ2(s?) for all δ satisfying |δSc
ρ?
|1 ≤ 3|δSρ?

|1, minimizing the LHS of the
inequality above over such δ yields

φ̂2(s?) ≥ φ2(s?)− an,

where

an = 16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞)

+ 16s?||G||2∞||Ω̂− Ω||`∞
+ 32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞).
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Using Assumptions 2 and 1 and Lemma D.1, we can put an upper bound on an as follows

16s?||Ĝ−G||2∞(||Ω̂− Ω||`∞ + ||Ω||∞) = 16s?Op((ε
G
n )

2)(op(1) +O(1)) = Op(s?(ε
G
n )

2)

16s?||G||2∞||Ω̂− Ω||`∞ = 16s?O(1)op(1) = op(s?)

32s?||Ĝ−G||∞||G||∞(||Ω̂− Ω||`∞ + ||Ω||∞) = 32s?Op(ε
G
n )O(1)(op(1) +O(1)) = Op(s?ε

G
n ).

Gathering the terms gives
an = Op(s?ε

G
n ),

which completes the proof. �

Proof of Theorem 1
As Ω̂ is positive definite, we can write

ρ̂L = argmin
ρ∈Rq

{||Ω̂1/2
q (M̂ − Ĝρ)||2 + 2λn|ρ|1}.

The minimizing property of ρ̂L implies

||Ω̂1/2
q (M̂ − Ĝρ̂L)||2 + 2λn|ρ̂L|1 ≤ ||Ω̂1/2

q (M̂ − Ĝρ?)||2 + 2λn|ρ?|1. (D.16)

First, observe that

||Ω̂1/2
q (M̂ − Ĝρ̂L)||2 − ||Ω̂1/2

q (M̂ − Ĝρ?)||2 = (M̂ − Ĝρ̂L)
′Ω̂q(M̂ − Ĝρ̂L)− (M̂ − Ĝρ?)

′Ω̂q(M̂ − Ĝρ?)

= ρ̂LĜ
′Ω̂qĜρ̂L − ρ?Ĝ

′Ω̂qĜρ? − 2(Ĝ′Ω̂qM̂)′(ρ̂L − ρ?)

= (ρ̂L − ρ?)
′Ĝ′Ω̂qĜ(ρ̂L − ρ?) + 2ρ′?Ĝ

′Ω̂qĜ(ρ̂L − ρ?)

− 2(Ĝ′Ω̂qM̂)′(ρ̂L − ρ?)

= ||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 − 2(Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?)

′(ρ̂L − ρ?).

Plug the expression above in (D.16) to get

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L|1 ≤ 2(Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?)

′(ρ̂L − ρ?) + 2λn|ρ?|1

≤ 2||Ĝ′Ω̂qM̂ − Ĝ′Ω̂qĜρ?||∞|ρ̂L − ρ?|1 + 2λn|ρ?|1

= 2||Ĝ′Ω̂q(M̂ − Ĝρ?)||∞|ρ̂L − ρ?|1 + 2λn|ρ?|1

= 2op(λn)|ρ̂L − ρ?|1 + 2λn|ρ?|1, (D.17)
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where the second inequality is Hölder and the last equality comes from Lemma D.7 and the
fact that εn = o(λn). Hence, with probability approaching one,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L|1 ≤ 2λn|ρ̂L − ρ?|1 + 2λn|ρ?|1.

Next, note that |ρ̂L|1 = |ρ̂L,Sρ?
|1 + |ρ̂L,Sc

ρ?
|1 and |ρ?|1 = |ρ?,Sρ?

|1 as |ρ?,Sc
ρ?
|1 = 0. Therefore,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L,Sc

ρ?
|1 ≤ 2λn|ρ̂L − ρ?|1 + 2λn(|ρ?,Sρ?

|1 − |ρ̂L,Sρ?
|1)

≤ 2λn|ρ̂L − ρ?|1 + 2λn|ρ̂L,Sρ?
− ρ?,Sρ?

|1,

where the second line comes from the reverse triangle inequality. Using that |ρ̂L − ρ?|1 =

|ρ̂L,Sρ?
− ρ?,Sρ?

|1 + |ρ̂L,Sc
ρ?
|1 gives

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤ 3λn|ρ̂L,Sρ?

− ρ?,Sρ?
|1. (D.18)

The inequality in (D.18) implies λn|ρ̂L,Sc
ρ?
|1 ≤ 3λn|ρ̂L,Sρ?

−ρ?,Sρ?
|1 leading to |ρ̂L,Sc

ρ?
|1 ≤ 3|ρ̂L,Sρ?

−
ρ?,Sρ?

|1, meaning that the restricted eigenvalue condition is satisfied. Note that by Cauchy-
Schwarz inequality, |ρ̂L,Sρ?

−ρ?,Sρ?
|1 ≤

√
s?||ρ̂L,Sρ?

−ρ?,Sρ?
||. Using this along with the restricted

eigenvalue condition on (D.18) yields

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤ 3λn

√
s?||ρ̂L,Sρ?

− ρ?,Sρ?
|| ≤ 3λn

√
s?
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||
φ̂(s?)

.

Note that by AM-GM inequality,

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + λn|ρ̂L,Sc

ρ?
|1 ≤

1

2
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||2 +
9

2

λ2ns?

φ̂2(s?)
.

Multiplying both sides by 2 and collecting terms gives

||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 + 2λn|ρ̂L,Sc

ρ?
|1 ≤

9λ2ns?

φ̂2(s?)
. (D.19)

To get the `1-error bound, ignore the first term on the LHS of (D.18) and add λn|ρ̂L,Sρ?
−

ρ?,Sρ?
|1 to both sides,

λn|ρ̂L − ρ?|1 ≤ 4λn|ρ̂L,Sρ?
− ρ?,Sρ?

|1.

By Cauchy-Schwarz inequality and the restricted eigenvalue condition,

λn|ρ̂L − ρ?|1 ≤ 4λn
√
s?||ρ̂L,Sρ?

− ρ?,Sρ?
|| ≤ 4λn

√
s?
||Ω̂1/2

q Ĝ′(ρ̂L − ρ?)||
φ̂(s?)

.
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The bound on ||Ω̂1/2
q Ĝ′(ρ̂L − ρ?)||2 in (D.19) implies

|ρ̂L − ρ?|1 ≤
12λns?

φ̂2(s?)
.

Next, by Lemma D.8 and εn = o(λn),

|ρ̂L − ρ?|1 ≤
12λns?

φ2(s?)− op(s?λn)
.

Focus on the RHS of the inequality,

Cλns?
φ2(s?)− op(s?λn)

=
C

φ2(s?)/(λns?)− op(1)
,

meaning that with probability approaching one,

|ρ̂L − ρ?|1 ≤
Cλns?
φ2(s?)

.

Moreover, applying the result of Lemma D.5 gives

|ρ̂L − ρ?|1 = Op(s̄λn). (D.20)

Finally, let α? = b(Z)′ρ?, then by the triangle inequality and Lemma D.6,

||α̂L − α0||2 ≤ ||α̂L − α?||2 + ||α? − α0||2 ≤ ||α̂L − α?||2 + Cs̄ε2n.

By Hölder’s inequality and (D.20),

||α̂L − α?||2 = (ρ̂L − ρ?)
′B(ρ̂L − ρ?) ≤ ||B||∞|ρ̂L − ρ?|21 ≤ Op(s̄

2λ2n).

The conclusion comes from the fact that s̄2λ2n > s̄2ε2n ≥ s̄ε2n, where the second inequality is due
to s̄2 growing faster than s̄.

�

D.2 Asymptotic properties

Lemma D.9. If Assumptions 1–3 and 6 are satisfied and εn = o(λn), then

|ρ̂L|1 = Op(1).
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Proof. Recall Equation (D.17) from the proof of Theorem 1 which implies

2λn|ρ̂L|1 ≤ 2op(λn)|ρ̂L − ρ?|1 + 2λn|ρ?|1.

Dividing both sides by 2λn and applying the triangle inequality gives

|ρ̂L|1 ≤ op(1)|ρ̂L − ρ?|1 + |ρ?|1 ≤ |ρ?|1 + op(1)(|ρ̂L|1 + |ρ?|1),

which implies that with probability approaching one,

|ρ̂L|1 ≤ |ρ?|1 +
1

2
(|ρ̂L|1 + |ρ?|1).

Subtracting |ρ̂L|1/2 from both sides and multiplying by 2 gives with probability approaching
one

|ρ̂L|1 ≤ 3|ρ?|1 = O(1).

�

Proof of Theorem 2
We prove the first conclusion by verifying the conditions of Lemma 15 of Chernozhukov

et al. (2020a). Let g(w, γ, α, θ) and φ(w, γ, α, θ) in Chernozhukov et al. (2020a) be m(w, γ)− θ

and α(z)[y−γ(x)] here, respectively. First, E[ψ(Wi, γ0, α0, θ0)
2] <∞ follows from Assumption 7.

Moreover, note that by Assumptions 7 and 8, Theorem 1, and the law of iterated expectations,∫
[φ(w, γ̂`, α0)− φ(w, γ0, α0)]

2F0(dw) =

∫
α2
0(z)[γ̂`(x)− γ0(x)]

2F0(dw) ≤ C||T (γ̂` − γ0)||2
p−→ 0∫

[φ(w, γ0, α̂`)− φ(w, γ0, α0)]
2F0(dw) =

∫
[α̂`(z)− α0(z)]

2[y − γ0(x)]
2F0(dw)

=

∫
[α̂`(z)− α0(z)]

2E[[y − γ0(x)]
2|z]F0(dz) ≤ C||α̂` − α0||2

p−→ 0.

Also, it follows from Assumption 8 that∫
[m(w, γ̂`)−m(w, γ0)]

2F0(dw)
p−→ 0.

Thus, all the conditions of Assumption 1 of Chernozhukov et al. (2020a) are satisfied.
Next, for each ` let

∆̂`(w) = φ(w, γ̂`, α̂`)− φ(w, γ0, α̂`)− φ(w, γ̂` α0) + φ(w, γ0, α0) = [α̂`(z)− α0(z)][γ̂`(x)− γ0(x)].
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Since α0 is bounded by Assumption 7 and supz |α̂`(z)| = Op(1) by Lemma D.9,∫
∆̂2

`(w)F0(dw) =

∫
[α̂`(z)− α0(z)]

2[γ̂`(x)− γ0(x)]
2F0(dw)

≤ Op(1)

∫
[γ̂`(x)− γ0(x)]

2F0(dw)
p−→ 0,

where the conclusion follows from Assumption 8. Furthermore, by Cauchy-Schwarz inequality
and Assumption 10,∣∣∣∣√n∫ ∆̂`(w)F0(dw)

∣∣∣∣ = √
n

∣∣∣∣∫ [α̂`(z)− α0(z)][γ̂`(x)− γ0(x)]F0(dw)

∣∣∣∣
=

√
n

∣∣∣∣∫ [α̂`(z)− α0(z)]E[γ̂`(x)− γ0(x)|z]F0(dz)

∣∣∣∣
≤

√
n||α̂` − α0|| ||T (γ̂` − γ0)|| = Op(n

1/2καnκ
γ
n)

p−→ 0,

which renders Assumption 2(iii) of Chernozhukov et al. (2020a) satisfied.
Also, by construction,∫

α̂`(z)[y − γ0(x)]F0(dw) = E[α̂`(z)E[y − γ0(x)]|z] = 0.

Combined with m(w, γ) being affine in γ verifies Assumption 3 of Chernozhukov et al. (2020a)
is satisfied. As a result, we get the first conclusion.

To get the second conclusion, we need to show that V̂ is a consistent estimator of V . This
part of the proof is very similar to the proof of Theorem 5 in Chernozhukov et al. (2020b). We
start with

V̂ =
1

n

n∑
i=1

ψ̂2
i =

1

n

n∑
i=1

(ψ̂i − ψi)
2 +

2

n

n∑
i=1

(ψ̂i − ψi)ψi +
1

n

n∑
i=1

ψ2
i ,

hence, by re-arranging the terms and Cauchy-Schwarz inequality,

V̂ − V =
1

n

n∑
i=1

(ψ̂i −ψi)
2 +

2

n

n∑
i=1

(ψ̂i −ψi)ψi ≤
1

n

n∑
i=1

(ψ̂i −ψi)
2 +2

√√√√ 1

n

n∑
i=1

(ψ̂i − ψi)2

√√√√ 1

n

n∑
i=1

ψ2
i .

(D.21)
Using the triangle inequality, for i ∈ I`,

(ψ̂i − ψi)
2 ≤ C

4∑
j=1

Rij = C

3∑
j=1

Rij + op(1),
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where

Ri1 = [m(Wi, γ̂`)−m(Wi, γ0)]
2,

Ri2 = α̂2
`(Zi)[γ̂`(Xi)− γ0(Xi)]

2,

Ri3 = [α̂`(Zi)− α0(Zi)]
2[Yi − γ0(Xi)]

2,

Ri4 = (θ̂ − θ0)
2.

The first conclusion implies Ri4
p−→ 0. Let I−` denote observations not in I`.

By Markov’s inequality, for some δ > 0,

P

(
1

n

n∑
i=1

(ψ̂i − ψi)
2 > δ

)
≤

E
[
1
n

∑n
i=1(ψ̂i − ψi)

2
]

δ
.

Note that the cross-fitting allows us to write

E

[
1

n

n∑
i=1

(ψ̂i − ψi)
2

]
≤ E

[
C

n

L∑
`=1

∑
i∈I`

3∑
j=1

Rij

]
+ op(1) = C

L∑
`=1

n`

n

3∑
j=1

E[E[Rij|I−`]] + op(1).

Furthermore, by Hölder’s inequality and Assumption 2,

max
i∈I`

|α̂`(Zi)| ≤ |ρ̂L|1 max
i∈I`

||b(Zi)||∞ ≤ Cb|ρ̂L|1.

By Lemma D.9,
max

i
|α̂`(Zi)| = CbOp(Ān) = Op(1).

Then for i ∈ I` by Assumptions 7, 8, and iterated expectations,

E[Ri1|I−`] =

∫
[m(Wi, γ̂`)−m(Wi, γ0)]

2F0(dW )
p−→ 0,

E[Ri2|I−`] ≤ Op(1)

∫
[γ̂`(Xi)− γ0(Xi)]

2F0(dX)
p−→ 0,

E[Ri3|I−`] = E
[
E
[
[α̂`(Zi)− α0(Zi)]

2[Yi − γ0(Xi)]
2|Zi, I−`

]
|I−`

]
= E

[
[α̂`(Zi)− α0(Zi)]

2E[[Yi − γ0(Xi)]
2|Zi]|I−`

]
≤ C||α̂` − α0||2

p−→ 0.

As a result,
1

n

n∑
i=1

(ψ̂i − ψi)
2 p−→ 0.
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Furthermore, E[ψ2
i ] < ∞ by Assumptions 7 and 8. Thus, the conclusion follows from (D.21)

and the central limit theorem.
�

Proof of Lemma 1
The proof is similar to the proof of Lemma 10 of Chernozhukov et al. (2020b). We start

with defining

M̂` = (M̂`1, . . . , M̂`q)
′, M̂`j =

1

n− n`

∑
`′ 6=`

∑
i∈I`′

D(Wi, dj, γ̃`,`′),

M̄`(γ) = (M̄`1(γ), . . . , M̄`q(γ))
′, M̄`j =

∫
D(w, dj, γ)F0(dw).

Note that M = M̄(γ0). Let Γ`,`′ = {||γ̃`,`′ − γ0|| ≤ ε}, and note that P(Γ`,`′) → 1 for each ` and `′

by Assumption 11. When Γ`,`′ occurs,

max
1≤j≤q

|D(W,dj, γ)| ≤ C

by Assumption 11. For i ∈ I`′ define

Tij(γ) = D(Wi, dj, γ)− M̄(γ), Uij(γ) =
1

n`′

∑
i∈I`′

Tij(γ).

Note that for any constant C̄ and the event A = {max1≤j≤q |Uij(γ)| ≥ C̄εn} where εn =√
log(q)/n,

P(A) = P(A|Γ`,`′)P(Γ`,`′) + P(A|Γc
`,`′)[1− P(Γ`,`′)] (D.22)

≤ P
(

max
1≤j≤q

|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
+ [1− P(Γ`,`′)].

Moreover,

P
(

max
1≤j≤q

|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
≤ q max

1≤j≤q
P
(
|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
.

Note that E[Tij(γ̃`,`′)|γ̃`,`′ ] = 0 for i ∈ I`′ . Furthermore, conditional on Γ`,`′ , for i ∈ I`′ ,

|Tij(γ̃`,`′)| ≤ 2C.

Hence, Tij is bounded. Similar to the proof of Lemma D.1, define K = 2C/ log 2 ≥ ||Tij||Ψ2 .
By Hoeffding’s inequality (see Theorem 2.6.2 in Vershynin (2018)) and the independence of
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{Wi}i∈I`′ and γ̃`,`′ , there is a constant c such that

q max
1≤j≤q

P
(
|Uij(γ̃`,`′)| ≥ C̄εn|Γ`,`′

)
= qE

[
max
1≤j≤q

P
(
|Uij(γ̃`,`′)| ≥ C̄εn|γ̃`,`′

)∣∣∣∣Γ`,`′

]
≤ 2qE

[
exp

(
−c(n`′C̄εn)

2

n`′K2

)∣∣∣∣Γ`,`′

]
≤ 2q exp

(
−cn`′C̄

2 log(q)
Ln`′K2

)
≤ 2 exp

(
log(q)

[
1− cC̄2

LK2

])
→ 0

for any C̄ > K
√
L/c. Let U`′(γ) = (U`′1, . . . , U`′q)

′. Then it follows from (D.22) that for large C̄,
P(|U`′(γ̃`,`′)| ≥ C̄εn) → 0, meaning that ||U`′(γ̃`,`′)||∞ = Op(εn).

Next, for each ` by the triangle inequality we have,

||M̂` −M ||∞ ≤ ||M̂` − M̄(γ̃`,`′)||∞ + ||M̄(γ̃`,`′)−M ||∞.

Furthermore, n− n` =
∑

`′ 6=` n`′ and

||M̂` − M̄(γ̃`,`′)||∞ =

∥∥∥∥∥M̂` −
∑
`′ 6=`

n`′

n− n`

M̄(γ̃`,`′)

∥∥∥∥∥
∞

≤
∑
`′ 6=`

n`′

n− n`

||U`′(γ̃`,`′)||∞ = Op(εn).

Also, by Assumption 11(ii) and P(Γ`,`′) → 1 for each ` and `′,

||M̄(γ̃`,`′)−M ||∞ ≤

∥∥∥∥∥∑
`′ 6=`

n`′

n− n`

[M̄(γ̃`,`′)−M ]

∥∥∥∥∥
∞

≤ C
∑
`′ 6=`

n`′

n− n`

||γ̃`,`′ − γ0|| = Op(κ
γ
n).

The conclusion follows from κγn being a slower rate than εn. �

Proof of Theorem 3
The proof is analogous to the proof of Theorem 2. We obtain the first conclusion by verifying

the conditions of Lemma 15 of Chernozhukov et al. (2020a). First, it follows from the proof
of Theorem 2 that the conditions of Assumptions 1 and 2 of Chernozhukov et al. (2020a) are
satisfied.
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Next, by Assumptions 12 and 13,

√
n|ψ̄(w, γ̂`, α0, θ0)| =

√
n

∣∣∣∣∫ [m(w, γ̂`)− θ0 + α0(z)[y − γ̂`(x)]]F0(dw)

∣∣∣∣
=

√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0) + α0(z)[y − γ̂`(x)]]F0(dw)

∣∣∣∣
=

√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0) + α0(z)[γ0(x)− γ̂`(x)]]F0(dw)

∣∣∣∣
=

√
n

∣∣∣∣∫ [m(w, γ̂`)−m(w, γ0)−D(w, γ0, γ̂` − γ0)]F0(dw)

∣∣∣∣
≤ C

√
n||γ̂` − γ0||2

=
√
nop((n

−1/4)2) = op(1).

Moreover, as in the proof of Theorem 2,∫
α̂`(z)[y − γ0(x)]F0(dw) = 0.

Thus, all the conditions of Assumption 3 of Chernozhukov et al. (2020a) are satisfied, which
combined with the results above gives us the first conclusion. The second conclusion follows
exactly as in the proof of Theorem 2. �

E Data cleaning and aggregation details

E.1 Imputations

Data on product characteristics have a lot of missing observations in the type of sweetener and
caffeine level. We use the following heuristics to impute those values:

• TYPE OF SWEETENER:

– if the calorie level is ”REGULAR”, then the type of sweetener will be ”SUGAR”;

– if the calorie level is ”CALORIE-FREE”, then the type of sweetener will be ” UNSWEET-
ENED”;

– if the calorie level is diet and the flavor is not cola, then the type of sweetener will
be ”SWEETENER”.

• CAFFEINE INFO:

– if flavor is ”GRAPEFRUIT”, ”LEMON LIME”, ”NATURAL”, ”STRAWBERRY”,
”PINEAPPLE”, ”GRAPE”, ”FRUIT PUNCH”, it is ”CAFFEINE FREE”;
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– if flavor is ”DEW” , ”PEPPER”, ”CHERRY COLA”, it is ”CAFFEINE”.

We also replace zero sales with ones and impute corresponding missing prices with the
average price of all other observed products in a particular store in a particular week.

E.2 Product characteristics aggregation

All product characteristics are categorical variables, to facilitate computations we group prod-
uct attributes into larger groups which can be coded up as dummy variables. We use the
following heuristics:

• FLAVOR/SCENT:

– cola (such as ”CHERRY COLA”, ”WILD CHERRY COLA”, ”COLA WITH LEMON”
and so on, basically everything with ”COLA”)

– lemonade (such as ”LEMONADE”, ”LEMON LIME”, ”MANDARINE LIME”, ”CIT-
RUS”, ”TANGERINE”, ”PUNCH”, etc.)

– alcohol-free beer (such as ”ROOT BEER”,”BIRCH BEER”, etc.)

– berries (”STRAWBERRY”, ”RASPBERRY” , ”CHERRY”, etc.)

– fruit (fruity flavors except berries or lemon, such as ”PINEAPPLE”, ”GRAPE”,
”PEACH”, ”WATERMELON”, etc.)

– cream soda (”RED CREAM SODA”, ”CREAM SODA”, etc.)

– others

• CALORIE LEVEL:

– caffeine free and 55% caffeine free are considered caffeine free

– other beverages are considered to contain caffeine

• CAFFEINE LEVEL:

– calorie free and diet beverages are considered to be diet

– other beverages are considered to be regular

• TYPE OF SWEETENER:

– sugar free

– sweetener (non-saccharin): Nutra, aspartame, sucralose, splenda

– sugar and/or corn sweetener/syrup: contains all entries corresponding to corn
sweeteners and sugar/saccharin containing products

60



F GNT basis functions

Here we present an idea behind the approximation strategy in GNT. We have a function γ (ωjt)

we need to approximate, where

ωjt =
(
ω′
j,1,t, . . . , ω

′
j,j−1,t, ω

′
j,j+1,t, . . . , ω

′
j,J,t

)′
is a vector representing the “state” of product j in market t (the shares and product characteristic
differences with respect to the rivals in the same market). Given the vector symmetric theory
underlying demand across markets, without loss of generality we can express

γ (ωjt) = g (F (ωjt))

where F is the empirical distribution of the variables in ωjt.
An approximation strategy for γ can be structured as following. For simplicity, write Fjt =

F (ωjt) and let us approximate the distributionFjt by a finite set of momentsm1 (Fjt) , . . . , mL (Fjt).
Then our approximation to γ can be expressed as

γ (ωjt) ≈ g (m1 (Fjt) , . . . ,mL (Fjt)) .

There are two issues we need to resolve to implement this approximation:

1. The choice of moments m1 (Fjt) , . . . ,mL (Fjt)

2. The choice of a predictive function g

Let us first deal with the choice of ml, l = 1, . . . , L. Let us define Mjt (τ) as the MGF associated
with Fjt, where τ =

(
τ1, . . . , τdx2+1

)
and dx2 is the dimension of x(2). Then define the moment

mjt
p1,..., pdx2+1

=
∂p1+...pdx2+1

∂tp11 . . . ∂t
pdx2+1

dx2+1

Mjt(τ)

∣∣∣∣∣
τ=0

This class of moments is defined by the multi-index p1, . . . pdx2+1 for pk ∈ Z+. We can define
the set of nth order moments to be

Bjt
n =

mjt
p1,..., pdx2+1

:

dx2+1∑
k=1

pk = n and n ≥ 2 and p1 > 0 and ∃k > 1 s.t. pk > 0

 .

Observe that we restrict shares which are the first dimension of the state vector ωjt to never
enter with a zero power, e.g., each moment has some interaction with shares. In addition,
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shares must interact with at least one dimension of differentiation. Then the set of moments
entering the nth order approximation for each t is

n⋃
i=2

Bjt
i

The choice of g can be determine by any functional form that allows for a flexible approx-
imation from the predictors m1 (Fjt) , . . . ,mL (Fjt), such as polynomials, B-splines, wavelets,
etc.

We use the idea above to construct b(zjt) and d(ωjt) dictionaries. We use 3rd order moments
to construct b(zjt) and 2nd order moments to construct d(ωjt). Then we construct quadratic
polynomials with interaction terms based on these moments, which gives p = 405 and q = 594.
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